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Abstrat: We make the onnetion between the geometri model for apillarity with line tension

and the Cahn-Hilliard model of two-phase uids. To this aim we onsider the energies

F

"

(u) := "

Z




jDuj

2

+

1

"

Z




W (u) + �

Z

�


V (u)

where u is a salar density funtion and W and V are double-well potentials. We show that the

behaviour of F

"

in the limit " ! 0 and � ! 1 depends on the limit of " log�. If this limit is

�nite and stritly positive, then the singular limit of the energies F

"

lead to a oupled problem of

bulk and surfae phase transitions, and under ertain assumptions agrees with the relaxation of

the apillary energy with line tension. These results were announed in [ABS1℄ and [ABS2℄.
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1. Introdution

In the lassial model for two-phase uids, it is given a uid in a ontainer 
 � R

3

, and it is

assumed that every on�guration of the system is desribed by the mass density u whih takes only

two values � and �, orresponding to the phases A := fu = �g and B := fu = �g = 
 n A. The

energy is loated on the interfae S

AB

whih separates the two phases, with density �

AB

(surfae

tension), and on the the ontat surfaes S

AW

and S

BW

between the wall of the ontainer and

the phases A and B, with density �

AW

and �

BW

respetively. Then the equilibrium on�gurations

minimize, under some volume onstraint, the apillary energy

E

0

(A) := �

AB

jS

AB

j+ �

AW

jS

AW

j+ �

BW

jS

BW

j : (1:1)

Here and in the following jAj denote the measure of A, namely the area when A is a surfae, and

the length when A is a line. Surfae energy densities are represented by the letter � with an index
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whih reall the type of interfae under onsideration; these oeÆients are stritly positive, and

learly do not depend on the partiular on�guration of the system.

The minimum problem (1:1) is the so-alled liquid-drop problem; the existene of a solution

for this minimum problem is assured by the wetting ondition

j�

AW

� �

BW

j � �

AB

: (1:2)

At equilibrium, the interfae S

AB

has onstant mean urvature, and it meets the wall of the

ontainer at a onstant ontat angle �, whih satis�es Young's law (see for instane [RW℄ or [F℄)

os(�) =

�

AW

� �

BW

�

AB

: (1:3)

An interesting extension of the previous model is obtained by adding to E

0

an energy on-

entrated along the line L



where S

AB

meets the wall of the ontainer (ontat line) with density

; this energy density is referred to as line tension (see [RW℄, [WW℄). In this model the apillary

energy beomes:

F

0

(A) := �

AB

jS

AB

j+ �

AW

jS

AW

j+ �

BW

jS

BW

j+ jL



j : (1:4)

An alternative way to study two-phase uids originates from the ontinuum mehanis ap-

proah initiated by Gibbs and revisited by Cahn and Hilliard in the 60's [CH℄. The interfae S

AB

is now replaed by a thin layer in whih the mass density u varies ontinuously from the value

� to the value �, and the energy assoiated with u is the sum of a Gibbs free energy

R




W (u),

where W is a two-wells potential vanishing at � and �, and a term �

R




jDuj

2

whih penalizes the

non-homogeneity of the uid. Moreover a boundary ontribution

R

�


V (u) an be added to take

into aount the interations between the uid and the wall of the ontainer.

The oeÆient � introdues an intrinsi length whih is harateristi of the thikness of the

interfae, and sine this length is in general muh smaller than the size of the ontainer, it is natural

to study the equilibrium of suh a uid in an asymptoti way, i.e., by onsidering the limits as

" tends to 0 of the minimizers u

"

(subjet to some mass onstraint

R




u

"

= m) of the resaled

energies

F

"

(u) := "

Z




jDuj

2

+

1

"

Z




W (u) + �

Z

�


V (u) ; (1:5)

where � represents the order of magnitude of the wall-uid interations.

This problem has been studied by several authors, mainly in the ase � = 0 (that is, when

no boundary energy is onsidered; see for instane [Gu℄, [Mo1℄, and [Ba℄ for multi-phase uids).

In the ase � = 1, L. Modia established in [Mo2℄ a rigorous onnetion between the lassial

model for apillarity E

0

and the Cahn-Hilliard model: the sequene of minimizers u

"

(of F

"

) is

pre-ompat in L

1

(
), eah limit point u takes only the values � and � (almost everywhere), and

the orresponding phase A := fu = �g solves the liquid-drop problem assoiated with an energy

of type (1:1), where the oeÆients �

AB

, �

AW

and �

BW

an be expressed in term of the potentials

W and V . We reall that in [Mo2℄ it was assumed that W , V , � and 
 do not depend on " (whih

means that " is in�nitely smaller than any other parameter of the problem) while in the present

work we onsider a di�erent behaviour for �, namely that � tends to in�nity as " tends to zero.

Di�erent assumptions have already been disussed in [BS℄ and [BDS℄.

The ontribution of this paper is twofold. First we fous on the model for apillarity with

line tension assoiated with the energy F

0

. We show that due to a lak of semiontinuity, this

funtional leads to ill-posed minimum problems. Then we apply the usual relaxation proedure

and we ompute the relaxed funtional F

0

expliitely.

Our seond goal is to establish a rigorous onnetion between F

0

and the Cahn-Hilliard model.

To this end we study the asymptoti behavior of the funtionals F

"

in the limit " ! 0 when �

2



tends to in�nity with a suitable saling and V is a two-well potential. We show that the limit of

F

"

in the sense of �-onvergene is a funtional F (u) whih is �nite only if u takes values � or �.

Thus we an view F as a funtion of the phase A := fu = �g, and it turns out that F agrees with

F

0

for suitable hoie of the potentials W and V . Consequently, if u

"

minimizes F

"

subjet to

the mass onstraint

R

"

u = m, and u is a limit point of the sequene (u

"

), then the orresponding

phase A := fu = �g minimizes F

0

subjet to a suitable volume onstraint.

The relaxation proedure is desribed in subsetion 2.2. We show that the total energy an

be properly written by introduing, besides the usual bulk phase A � 
, an additional variable

A

0

� �
 whih is ompletely independent of A; A

0

and its omplement B

0

:= �
 n A

0

are alled

boundary phases. The total energy of the on�guration (A;A

0

) is then given by the sum of three

di�erent terms: the lassial surfae tension on the interfae between the bulk phases A and

B, a surfae density on the wall of the ontainer (whih depends on whih bulk phase and whih

boundary phase meet together) and a line density along the lineL

A

0

B

0

whih separates the boundary

phases A

0

and B

0

(dividing line).

Thus F

0

(A) is obtained by taking the minimum of �

0

(A;A

0

) over all possible A

0

(see Theorem

2.1). Notie that in general the boundary phase A

0

where suh a minimum is attained di�ers from

the interfae S

AW

between A and the wall of the ontainer, and therefore F

0

is no longer of the

form (1:4). In partiular it is a nonloal funtional (while �

0

is loal), and what we alled \line

tension" is now loated on the dividing line L

A

0

B

0

, whih in general does not agree with the ontat

line L



; in this ase we speak of \dissoiation of ontat line and dividing line".

In subsetion 2.3 we show that a similar situation ours when we study the asymptoti

behaviour of F

"

. In order to properly write the limit of the boundary energies, as "! 0 we need to

introdue besides the usual bulk mass density u an additional variable v : �
! R alled boundary

mass density. A on�guration of the limit problem is represented by a ouple (u; v) to whih we

assoiate a total energy �(u; v) (see Theorem 2.6). As before, we an reover from � a funtional

whih depends only on the bulk density u: the limit F (u) of the funtionals F

"

(in the sense of

�-onvergene) is given by the minimum of �(u; v) over all possible v (Corollary 2.7).

Sine � is �nite only when u takes values � and � and v takes values �

0

and �

0

(the wells of

the potential V ), we may regard � as a funtion of A := fu = �g and A

0

:= fv = �

0

g. In subsetion

2.4 we enompass �

0

and � in a more general lass of funtionals. This leads to di�erent models

for apillarity with line tension, and then we need some qualitative omparison; indeed we show

that �

0

an be always obtained as � for a suitable hoie of the potentials V and W , while the

onverse is true only if V and W satisfy ertain restritions.

Setions 3 and 4 are devoted to the proofs of the mathematial results stated in setion 2.

The main mathematial diÆulties arise in the proof of the �-onvergene result for the funtional

F

"

. While the the limit energy an be evaluated in the bulk as in [Mo1℄, the haraterization

of the boundary ontribution is more intriate. In partiular the two-dimensional part of the

boundary ontribution is studied by adapting the approah of [Mo2℄; for the one-dimensional part

we need several steps: �rst, by loalization and sliing arguments we redue to a problem on a

two-dimensional half-disk; then we replae the two-dimensional Dirihlet energy on the half-disk

by the H

1=2

intrinsi norm on the diameter; eventually we are led to a new kind of singular

perturbation problem involving a nonloal term. This problem has its own interest (see Theorem

4.4 and [ABS1℄), and brings to the fore the right saling for �, namely log� ' 1=". Some tehnial

lemmas have been postponed in setion 6.

In setion 5, we desribe the mehanial onsequenes of our model for line tension in term

of equilibrium on�gurations. We show that the dissoiation of ontat line and dividing line may

our also at equilibrium, and in that ase the ontat angle no longer satis�es Young's law but

an entirely di�erent ondition. Aordingly, in the quasistati evolution of suh a uid the ontat

angle may have disontinuous hanges.
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2. Desription of the results

We begin by �xing the notation and realling some standard mathematial results used

throughout the paper. Then we disuss the relaxation of the funtional F

0

(subsetion 2.2) and

the asymptoti behaviour of the funtionals F

"

(subsetion 2.3). The omparison between these

results is briey disussed in subsetion 2.4.

2.1. Notation

In this paper we onsider di�erent domains A with dimension h = 1; 2; 3; more preisely, A

is always a bounded open set either of R

h

or of a smooth h-dimensional manifold M without

boundary, embedded in R

3

. We denote by �A the boundary of A relative to the ambient manifold;

�A is always assumed Lipshitz regular.

We denote by B

r

(x) the ball with enter x and radius r; we write a _ b and a ^ b for the

maximum and the minimum of a and b respetively.

Unless di�erently stated A is always endowed with the orresponding h-dimensional Hausdor�

measure H

h

(f. [EG℄, hapter 2). Aordingly, we often write

R

A

f instead of

R

A

f dH

h

, and

jAj instead of H

h

(A), whereas we never omit an expliit mention of the measure when it di�ers

from H

h

. We often use the fat that given a set B � R

k

and a Lipshitz funtion f on B, then

H

h

(f(B)) � (Lip(f))

h

H

h

(B), where Lip(f) is the Lipshitz onstant of f .

The h-dimensional density of E at a point x is the limit (if it exists) of the ratioH

h

(E\B

r

(x))

over !

h

r

h

as r ! 0, where !

h

is the measure of unit ball in R

h

. The essential boundary of E is the

set of all points where E has neither density 1 nor density 0, inluding all points where the density

does not exist. Sine the essential boundary agrees with the topologial boundary when the latter

is Lipshitz regular, we denote by �E also the essential boundary.

Troughout the rest of this paper, all the funtions and sets are assumed Borel measurable and

questions of measurability will never be disussed.

Funtional spaes

Let A be an h-dimensional domain and take u 2 L

1

lo

(A). The derivative of u in the sense of

distributions is denoted by Du. As usual H

1

(A) is the Sobolev spae of all real funtions u 2 L

2

(A)

suh that Du belongs to L

2

(A), and BV (A) is the spae of all u 2 L

1

(A) with bounded variation,

that is, suh that Du is a bounded Borel measure on A. Notie that when A is an open subset of

a manifold M � R

3

and u 2 H

1

(A), then Du : A ! R

3

and Du(x) belongs to the tangent spae

of M at x for a.e. x 2 A. If u 2 BV (A), then Du is a measure on A whih takes values in R

3

and

the density of Du with respet to its variation jDuj at x, belongs to the tangent spae of M at x

for jDuj-a.e. x 2 A. Reall that every bounded set in BV (A) is relatively ompat in L

1

(A). The

letter T denotes the trae operator whih maps H

1

(A) onto H

1=2

(�A) and BV (A) onto L

1

(�A).

For further details and results about the theory of BV funtions and Sobolev spaes we refer

the reader to [EG℄, hapters 4 and 5.

Jump set and essential boundary

Let A be an h-dimensional domain and take u 2 L

1

lo

(A). The jump set Su is the omplement

of the set of Lebesgue points of u, i.e., the set of points where the upper and lower approximate

limits of u di�er or are not �nite. If u 2 BV (A) then Su is reti�able: this means that it may

be overed by ountably many (h� 1)-dimensional submanifolds of lass C

1

exept for an H

h�1

-

negligible subset. In partiular the dimension of Su does not exeed h � 1, and if u belongs to

H

1

(A) then Su is H

h�1

-negligible (see [EG℄, setions 4.8 and 5.9).

For every I � R, we de�ne BV (A; I) as the lass of all u 2 BV (A) suh that u(x) 2 I

for a.e. x 2 A. If I := f�; �g, then a funtion u : A ! I belongs to BV (A) if and only if

H

h�1

(Su) < +1, and (� � �)H

h�1

(Su) agrees with the total variation kDuk of the derivative

4



Du (f. [EG℄, setion 5.11). In the partiular ase I = f0; 1g, u is the harateristi funtion of a

set E and is denoted by 1

E

, and E is alled a set with �nite perimeter in A. Sine the essential

boundary of E agrees in A with the jump set of 1

E

, we dedue that E has a �nite perimeter in

A if and only if H

h�1

(�E \ A) is �nite. For this reason the notion of essential boundary �ts out

purposes more than the topologial boundary.

Every reti�able set S an be endowed with a (measure theoreti) normal �eld � whih enjoys

the following property: for every hypersurfae M of lass C

1

and H

h�1

-almost every x in M \ S

the vetor �(x) agrees with a normal unit vetor to M at x. Moreover when S is the jump set

of a funtion u 2 BV (A; I) with I := f�; �g we an hose � so that the measure derivative Du

is given by the restrition of the measure H

h�1

to the set Su multiplied by the density funtion

(� � �) � �. This hoie of � is unique up to H

h�1

-negligible sets and is denoted by �

u

; when u is

the harateristi funtion of a �nite perimeter set E this normal �eld is also denoted by �

E

and

is alled the (approximate) inner normal to E.

Eventually we remark that when E has �nite perimeter in A the trae of the BV funtion 1

E

on �A (whih is de�ned as an element of L

1

(�A)) is the harateristi funtion of the set �E \�A.

In this sense, the set �E \ �A an be regarded as the trae of E on �A.

2.2. The relaxation theorem

The ontainer is represented by a bounded open set 
 of R

3

with a boundary of lass C

1

and the bulk phases are denoted A and B. Sine B = 
 n A, every on�guration is identi�ed by

A. In the following �A and �B denote the essential boundaries of A and B, and then the various

interfaes involved in the expression of the energies E

0

or F

0

are de�ned as follows:

S

AB

:= �A \ �B is the surfae whih separates the phases A and B;

S

AW

:= �A \ �
 is the surfae whih separates A from the wall of the ontainer;

S

BW

:= �B \ �
 is the surfae whih separates B from the wall of the ontainer.

L



:= �S

AW

is the ontat line, i.e., the line whih separates S

AW

from S

BW

.

In the following the letters S and L always denote a surfae and a line respetively, and

therefore we often denote the area H

2

(S ) and the length H

1

(L ) simply by jS j and jL j. The

letters in sans-serif A and B will be reserved for the phases.

The admissible on�gurations of the system belong to the spae X of all Borel subsets of 
.

We endow X with the distane d(A

1

;A

2

) := H

3

(A

1

4A

2

), where A

1

4A

2

:= (A

1

n A

2

) [ (A

2

n A

1

)

is the symmetri di�erene of A

1

and A

2

.

Our �rst laim is that the funtional F

0

de�ned in (1:4) is not lower semiontinuous on X .

The reason an be easily outlined: �x a on�guration A and ompare its energy with the energy of

a new on�guration A

Æ

whih is obtained by inserting a layer of phase B with thikness Æ between

A and the wall (see �gure 1).

A Aδ
δ

B Bδ
contact line L c

SAW
SBW

Figure 1: the on�gurations A and A

Æ

.

As Æ tends to zero, A

Æ

onverges to A in X , and sine A

Æ

does not touh the wall, the ontat

line of the new on�guration is empty and the interfae between the two phases A

Æ

and B

Æ

onsists

5



roughly speaking in the union S

AB

[S

AW

. Hene

F

0

(A)� F

0

(A

Æ

) ' (�

AW

� �

AB

� �

BW

) jS

AW

j+ jL



j : (2:1)

Clearly the right hand side of (2:1) is stritly positive for a suitable hoie of A: indeed the area

jS

AW

j is bounded by j�
j while the length jL



j an be taken arbitrarily large. Hene for suh a

on�guration there holds lim inf F

0

(A

Æ

) < F

0

(A).

Let us emphasize that this phenomenon is not related to the partiular hoie of the topology

on the spae of on�gurations X . Sine we are interested in minimizing F

0

, we an onsider only

topologies whih make F

0

oerive, that is, suh that every sequene whih is bounded in energy is

pre-ompat, and it an be easily heked that the hoie of any (separated) topology in this lass

has no inidene on the lower semiontinuity of F

0

. Notie that due to the ompat embedding of

BV (
) in L

1

(
), the metri we imposed on X makes F

0

oerive.

This lak of lower semiontinuity shows that looking for equilibrium on�gurations on the

basis of the model F

0

leads to ill-posed problems. In subsetion 5.2 we show that the energy F

0

may admit no minimizer with presribed volume.

The next natural step is to onsider the relaxation of F

0

, namely

F

0

(A) := inf

�

lim inf

n!1

F

0

(A

n

) : A

n

! A in X

	

: (2:2)

First we remark that given a sequene (A

n

) whih tends to A in X , the trae of A

n

on �
 (i.e.,

S

A

n

W

) onverges in X

0

to a set A

0

whih in general does not agree with the trae of A. This is

indeed the ase for the sequene (A

Æ

) de�ned above (see �gure 1). This onsideration suggests that

to desribe the relaxation of F

0

it is onvenient to introdue, besides the usual \bulk" phases A

and B, two additional \boundary" phases A

0

and B

0

.

Spei�ally, for every A � 
 and A

0

� �
 we set

B

0

:= �
 n A

0

; L

A

0

B

0

:= �A

0

;

S

AA

0

:= S

AW

\ A

0

= �A \ A

0

; S

AB

0

:= S

AW

\ B

0

= �A \ B

0

;

S

BA

0

:= S

BW

\ A

0

= �B \ A

0

; S

BB

0

:= S

BW

\ B

0

= �B \ B

0

:

(2:3)

The line L

A

0

B

0

whih separates the phases A

0

and B

0

will be alled the dividing line.

We assoiate with eah on�guration (A;A

0

) the energy

�

0

(A;A

0

) := �

AB

jS

AB

j+ �

AW

jS

AA

0

j+ (�

AB

+ �

BW

) jS

AB

0

j+

+ �

BW

jS

BB

0

j+ (�

AB

+ �

BW

) jS

BA

0

j+ jL

A

0

B

0

j :

(2:4)

Therefore F

0

an be written in terms of �

0

by

F

0

(A) = �

0

(A;S

AW

) : (2:5)

The spae of all admissible on�gurations is now X � X

0

, where X is de�ned above and X

0

is

the spae of all Borel subsets of �
, endowed with the distane d

0

(A

0

1

;A

0

2

) := jA

0

1

4A

0

2

j. Sine all

oeÆients in (2:4) are stritly positive we dedue immediately that the funtional �

0

is oerive

on X�X

0

and �nite at (A;A

0

) if and only if A has �nite perimeter in 
 and A

0

has �nite perimeter

in �
. We an now state our relaxation result (see setion 3 for the proof):

Theorem 2.1. The funtional �

0

is lower semiontinous on X �X

0

, and the relaxation of F

0

on X is given by

F

0

(A) = min

�

�

0

(A;A

0

) : A

0

2 X

0

	

: (2:6)
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This result is still valid if we replae the spae X by the sublass X

v

of all A 2 X suh that

jAj = vg, where v is a �xed number suh that 0 < v < j
j (this re�nement of Theorem 2.1 requires

a slight modi�ation of the proof whih we leave to the reader). This remark allows us to onsider

the minimization of F

0

under the volume onstraint jAj = v:

Corollary 2.2. For every v suh that 0 < v < j
j there holds

inf

�

F

0

(A) : jAj = v

	

= min

X

v

F

0

= min

X

v

�X

0

�

0

: (2:7)

Remark 2.3. >From (2:5) and (2:6) we onlude that a on�guration A minimizes F

0

on X

v

if

and only if (A;S

AW

) minimizes �

0

in X

v

� X

0

. In this ase the ontat line L



oinides with

the dividing line L

A

0

B

0

. In subsetion 5.2 we give an example where F

0

has no minimizer on X

v

:

indeed for every minimizing on�guration (A;A

0

) in X

v

�X

0

there holds A

0

6= S

AW

.

Remark 2.4. When the wetting ondition

j�

AW

� �

BW

j � �

AB

(2:8)

is not satis�ed, the minimum problem min

�

�

0

(A;A

0

) : A

0

2 X

0

	

an be expliitly solved: if

�

AW

> �

BW

+�

AB

(the other ase is similar) then the minimum is ahieved when A

0

is empty, and

(2:6) beomes

F

0

(A) = �

0

(A;�) = �

AB

jS

AB

j+ (�

AB

+ �

BW

) jS

AW

j+ �

BW

jS

BB

0

j : (2:9)

This means that it is always onvenient to separate ompletely the phase A from the boundary by

inserting an in�nitely thin layer of phase B. In this ase F

0

has the same form as the energy E

0

in (1:1), and no line tension appears.

Remark 2.5. In the limit ase  = 0 Theorem 2.1 gives a formula for the relaxation E

0

of the

energy E

0

in (1:1): when the wetting ondition (2:8) is satis�ed E

0

= E

0

, (that is, E

0

is lower

semiontinous on X), otherwise E

0

is given by (2:9) (at least when �

AW

> �

BW

+ �

AB

).

Hene the relaxation of E

0

has always the same form as E

0

, only the oeÆients hange. This

spei� property of E

0

explains why the relaxation step is usually skipped: one deals diretly with

the relaxed form by assuming a priori that the wetting ondition (2:8) is ful�lled, while from our

point of view this is only a onsequene of the relaxation proedure.

2.3. The �-onvergene theorem

As before, 
 is a bounded open subset of R

3

with boundary of lass C

1

; W (resp. V ) is a

non-negative ontinuous funtion on R with growth at least linear at in�nity and vanishes in the

double-well I := f�; �g, with � < � (resp. in I

0

:= f�

0

; �

0

g with �

0

< �

0

). The symbol " denotes

a parameter dereasing to 0, while �

"

is a parameter whih goes to in�nity as "! 0 and satis�es

lim

"!0

" log�

"

= K with 0 < K <1. (2:10)

The funtion H is a primitive of 2

p

W , and we set

� :=

�

�

H(�) �H(�)

�

�

= 2

Z

�

�

p

W and  := (�

0

� �

0

)

2

K

�

: (2:11)
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For every " > 0 and u 2 H

1

(
) we de�ne the funtional

F

"

(u) := "

Z




jDuj

2

+

1

"

Z




W (u) + �

"

Z

�


V (Tu) ; (2:12)

where Tu is the trae of u on �
.

First we want to briey aount for the hoie of the double-well potential in the boundary

energy

R

�


V (Tu) and of the saling (2:10). The ase �

"

= 0 (that is, when no boundary energy

is taken into aount in F

"

) was already onsidered in [Mo1℄ (f. Theorem 4.2 below). The

term "

�1

R

W (u) fores u

"

to take values lose to � and �, while the term "

R

jDuj

2

penalizes

the osillations of u

"

. When " tends to 0, the funtions u

"

onverge (up to a subsequene) to a

funtion u 2 BV (
) whih takes only the values � and �. Moreover eah u

"

has a transition from

the value � to the value � in a thin layer lose to the surfae Su whih separates the bulk phases

fu = �g and fu = �g. Sine the energy F

"

(u

"

) tends to onentrate in this layer, the limit energy

is distributed on Su with surfae density � (surfae tension).

In [Mo2℄ this analysis has been extended to the ase �

"

= 1 (V being any positive ontinuous

funtion). In this ase the traes Tu

"

of the minimizers u

"

onverge to a funtion v on �
. This

funtion is onstant on the trae of eah bulk phase, namely fTu = �g and fTu = �g, but di�ers

from Tu. The transition of u

"

from Tu to v ours in a thin boundary layer, and sine part of the

total energy F

"

(u

"

) onentrates in this layer, an additional surfae density appears in the limit

"! 0.

In this paper we investigate the ase when �

"

tends to in�nity. If we assume that V is a

double-well potential, the boundary part of F

"

fores the traes Tu

"

to take values lose to �

0

and

�

0

, while the osillations of the traes Tu

"

are penalized by the bulk integral "

R

jDuj

2

. Then we

expet that the traes Tu

"

onverge to a funtion v whih takes only the values �

0

and �

0

and that

a onentration of energy ours along line Sv whih separates the boundary phases fv = �

0

g and

fv = �

0

g.

The interest of this asymptoti model lies in the possible onnetion between this line on-

entration of energy and the line tension phenomenon. In order to establish suh a onnetion,

we �rst have to ensure that the transition of Tu

"

from �

0

and �

0

does take plae in a thin layer.

This brings to the fore saling (2:10), whih also provides a uniform ontrol on the osillations of

Tu

"

. In fat we an prove that under (2:10) the traes Tu

"

onverge (up to a subsequene) to a

funtion v in BV (�
; I

0

), and then the boundary phases fv = �

0

g and fv = �

0

g are divided by the

reti�able urve Sv.

At this stage, we investigate the relation between v and Tu. In partiular we wonder whether

the boundary phases agree with the traes of the volume phases. In general the answer is negative,

and indeed this situation is quite similar to the one desribed in the previous subsetion: the

asymptoti behavior of the funtionals F

"

is desribed by a funtional � whih depends on the two

variables u and v. Sine the total energy F

"

(u

"

) is partly onentrated in a thin layer lose to Su

(where u

"

has a transition from � to �), partly in a thin layer lose to the boundary (where u

"

has a transition from Tu to v), and partly in the viinity of Sv (where Tu

"

has a transition from

�

0

to �

0

), we expet that the limit energy is the sum of a surfae energy on onentrated on Su, a

boundary energy on �
 (with density depending on the gap between Tu and v), and a line energy

onentrated along Sv.

Preisely we have the following theorem (see setion 4 for the proof), whih is the main result

of this paper.

Theorem 2.6. For every u 2 BV (
; I) and v 2 BV (�
; I

0

) we set

�(u; v) := �H

2

(Su) +

Z

�


�

�

H(Tu)�H(v)

�

�

+ H

1

(Sv) : (2:13)
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Then the following three statements hold.

(i) Compatness: let (u

"

) � H

1

(
) be a sequene suh that " ! 0 and F

"

(u

"

) is bounded. Then

the sequene (u

"

; Tu

"

) is pre-ompat in L

1

(
) � L

1

(�
) and every luster point belongs to

BV (
; I)�BV (�
; I

0

).

(ii) Lower bound inequality: for every (u; v) in BV (
; I)�BV (�
; I

0

) and every sequene (u

"

) �

H

1

(
) suh that u

"

! u in L

1

(
) and Tu

"

! v in L

1

(�
), there holds

lim inf

"!0

F

"

(u

"

) � �(u; v) : (2:14)

(iii) Upper bound inequality: for every (u; v) in BV (
; I) � BV (�
; I

0

) there exists an approxi-

mating sequene (u

"

) � H

1

(
) suh that u

"

! u in L

1

(
), Tu

"

! v in L

1

(�
) and

lim sup

"!0

F

"

(u

"

) � �(u; v) : (2:15)

This theorem an be easily rewritten in term of �-onvergene (for the de�nition and the main

properties of �-onvergene we refer the reader to [DM℄, hapters 6-9, see also [Al℄). To this end

we extend eah F

"

to +1 on L

1

(
) nH

1

(
), and from Theorem 2.6 we immediately dedue the

following orollary.

Corollary 2.7. The �-limit on L

1

(
) of the funtionals F

"

is given by

F (u) :=

8

<

:

inf

�

�(u; v) : v 2 BV (�
; I

0

)

	

if u 2 BV (
; I),

+1 elsewhere in L

1

(
).

(2:16)

Note that the funtional F (u) is nonloal with respet to u, in the sense that it annot be

expressed by integration of a loal density depending on u and Du.

Statement (iii) of Theorem 2.6 an be re�ned by hoosing the approximating sequene (u

"

)

so that

R




u

"

=

R




u for every " (we will not prove this re�nement, in fat one has to slightly

modify the onstrution of the approximating sequene (u

"

) in Lemma 4.15). This way we an �t

with a presribed mass onstraint: if we take m suh that �j
j < m < �j
j, then the funtionals

F

"

�-onverge to F also on the subspae of all u 2 L

1

(
) suh that

R




u = m. By a well-known

property of �-onvergene and statement (i) of Theorem 2.6, we immediately dedue the following

result:

Corollary 2.8. For every " > 0 let u

"

be a solution of the problem

min

�

F

"

(u) :

R




u = m

	

: (2:17)

Then the sequene (u

"

) is pre-ompat in L

1

(
), and every luster point belongs to BV (
; I) and

solves

min

�

F (u) :

R




u = m

	

: (2:18)

2.4. Comparison of the results

In this subsetion we make a brief omparison of the results obtained in subsetions 2.2 and

2.3. The energies �

0

and � that we have derived in the study of the relaxation of F

0

and of the

�-limit of F

"

an be written in the following general geometri form:

�

gen

(A;A

0

) := �

AB

jS

AB

j+ �

AA

0

jS

AA

0

j+ �

AB

0

jS

AB

0

j+

+ �

BA

0

jS

BA

0

j+ �

BB

0

jS

BB

0

j+  jL

A

0

B

0

j :

(2:19)
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where (A;A

0

) belongs to the spae of admissible on�gurations X �X

0

. More preisely, the fun-

tional �

0

de�ned by (2:4) agrees with �

gen

if we set

�

AA

0

:= �

AW

; �

AB

0

:= �

AB

+ �

BW

;

�

BB

0

:= �

BW

; �

BA

0

:= �

AB

+ �

AW

:

(2:20)

On the other hand, if for every u 2 BV (
; I) and v 2 BV (�
; I

0

) we onsider the bulk phase

A := fu(x) = �

	

� 
 and the boundary phase A

0

:= fv(x) = �

0

	

� �
, then the funtional �

de�ned in (2:13) satis�es the identity �(u; v) = �

gen

(A;A

0

) provided that we set

�

AB

:= � ;  :=  ;

�

AA

0

:=

�

�

H(�)�H(�

0

)

�

�

; �

AB

0

:=

�

�

H(�)�H(�

0

)

�

�

;

�

BA

0

:=

�

�

H(�)�H(�

0

)

�

�

; �

BB

0

:=

�

�

H(�)�H(�

0

)

�

�

;

(2:21)

where H , � and  are given in (2:11).

One an easily hek that the oeÆients of the funtional �

gen

an be written in the form

(2:20) (for a suitable hoie of �

AB

, �

AW

and �

BW

) if and only if they satisfy the relations

�

AB

0

= �

AB

+ �

BB

0

and �

BA

0

= �

AB

+ �

AA

0

: (2:22)

On the other hand, taking into aount that the funtion H is stritly inreasing it is easy to show

that that the oeÆients in (2:21) ful�lls the relations in (2:22) if and only if the relative positions

of the wells �; �; �

0

; �

0

are the following:

�

0

� � < � � �

0

: (2:23)

Therefore when (2:23) is assumed we derive in a rigorous way that the model of apillarity with

line tension (assoiated with F

0

) is reovered from the Cahn-Hilliard model (assoiated with F

"

)

in the limit "! 0. This arries out the main issue of our initial program.

Now we briey aount for some general features of the energies �

0

, � and �

gen

. Clearly the

funtional �

gen

is oerive on X �X

0

beause the energy densities �

AB

and  are stritly positive.

The semiontinuity is disussed in the following statement (proved in setion 3).

Theorem 2.9. The funtional �

gen

is lower semiontinuous on X � X

0

if and only if the

oeÆients in (2:19) veri�es the following generalized wetting onditions (f. (1:2)):

�

�

�

AA

0

� �

BA

0

�

�

� �

AB

and

�

�

�

AB

0

� �

BB

0

�

�

� �

AB

: (2:24)

Remark 2.10. Obviously (2:24) is satis�ed when the oeÆients in �

gen

are given either by (2:20)

or by (2:21); hene we reover the lower semiontinuity of �

0

and � (f. Theorems 2.1 and 2.6).

We may ompare the models assoiated with the energies �

0

, � and �

gen

by disussing the

number N of independent parameters whih drive the geometry of the equilibrium on�gurations

(i.e., the number of their degrees of freedom). Notie that the equilibrium on�gurations of �

gen

(subjet to some volume onstraint) do not hange if we multiply all the oeÆients in (2:19) by

a onstant fator, or if we add the same onstant to the boudary oeÆients �

AA

0

, �

AB

0

, �

BA

0

and

�

BB

0

. Hene for �

gen

we have N = 4.

For �

0

we have to onsider the two additional onditions in (2:22), and then N = 2.

For � the number N depends on the relative positions of �; �; �

0

; �

0

: in the ase �

0

< � <

� < �

0

, N = 2 beause we an redue to the ase �

0

. We let the reader hek that N = 3 in the

remaining �ve ases.
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These onsiderations about the value ofN suggest the possibility of an experimental validation

either of the line tension model F

0

(i.e., �

0

), or of the model derived from the Cahn-Hilliard model

F

"

(i.e. �), or of the more general �

gen

. In fat all these models seem to be physially aeptable.

We onlude this setion with some omments on their physial bakground.

Capillary energy with line tension, like F

0

, is frequently onsidered in physis (see [RW℄ or

[WW℄), and we have proved that the well-posed problems naturally assoiated with F

0

an only

be de�ned through �

0

. In other words the interation between the uids and the wall an be

eÆiently desribed only by onsidering two boundary phases whih are independent of the bulk

phases. Notie that the idea of phase transition between surfaes phases on the wall of the ontainer

has already been suggested (see for instane [DG℄).

As notied before, �

0

is obtained from �

gen

imposing the restritions (2:22). In the relax-

ation proedure whih leads to �

0

, the interfae S

AB

0

is viewed as the part of the wall where an

in�nitesimal layer of the phase B is interposed between the phase A and the wall of the ontainer

(a similar argument applies to S

BA

0

), and the relations (2:22) are a onsequene of the fat that

the energy density of suh a layer is simply the sum of �

AB

(due to the transition from A to B)

and �

BW

(due to the transition from B to the wall). On a physial level, suh a superposition

priniple has no reason to hold: onsider for instane a layer whose thikness has the same order

as the range of the interation fores whih generate the surfae tension. Then it is quite natural

to onsider generalized energies of the form �

gen

.

The funtional � whih orresponds to the asymptoti limit of the Cahn-Hilliard model,

appears as an intermediate ase between �

0

and �

gen

(and indeed for � we have N = 2 or N = 3).

The Cahn-Hilliard model, despite its relative simpliity, is known to desribe eÆiently many

interfaial phenomena. In this paper we show that it an be used to desribe line tension phenomena

as well. One may question the physial ground of the boundary energy we postulated, and in

partiular on the double-well potential V and the saling (2:10) for �

"

. Indeed these assumptions

are totally di�erent from those of Cahn and Hilliard [CH℄ or Modia [Mo2℄ (where �

"

does not

depend on " and V is a monotone funtion). To our knowledge, the boundary energy annot be

reahed by diret experiments, but only through its e�ets on the marosopi equilibrium. We

justify our assumptions a posteriori by the relevane of the model assoiated with the limit energy

�.

3. Proof of the relaxation result

This setion is devoted to the proof of Theorem 2.1 and Theorem 2.9.

We follow here the notation introdued in subsetion 2.2; in partiular, given sets A and B

in 
 (resp. in �
) the identity A = B must be intended up to negligible subsets, that is, in the

sense of the spae X (resp. X

0

). We also reall that �A denotes the essential boundary of A, and

not the topologial one. All statements and proofs in this setion an be adapted without essential

modi�ations to arbitrary dimension.

Lemma 3.1. Let be given B � �
. Then for every Æ > 0 there exists E with �nite perimeter in


 suh that

(i) B is the trae of E on �
, that is, B = �E \ �
;

(ii) jEj � Æ and j�E \ 
j � jBj+ Æ.

Proof. This statement is an immediate orollary of a well-known result of Gagliardo (see for instane

[Gi℄, Theorem 2.16).
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Lemma 3.2. Let be given M � �
. Then the funtional A 7! j�A \ 
j � j�A4M j is lower

semiontinuous on X.

Proof. We apply Lemma 3.1 with 
 and B replaed by R

3

n 
 and �
 nM respetively, and we

�nd a set E � R

3

n
 with �nite perimeter in R

3

n
 so that �E \ �
 = �
 nM .

Then �
 n �E = M and, sine A \ E = � for every A 2 X , we have that �(A [ E) is the

disjoint union of �A \ 
, �E n
 and �
 \ �(A [ E), and �
 \ �(A [ E) = �
 n (�A4M).

E

 A
M

Figure 2: the sets M and E.

Hene

j�A \ 
j � j�A4M j = j�(A [ E)j+ j�E n 
j+ j�
j :

Sine E is �xed, the thesis follows from the lower semiontinuity of the perimeter j�(A [E)j with

respet to A.

Proof of Theorem 2.9

We assume �rst that the generalized wetting ondition (2:24) does not hold, and in partiular

that �

AA

0

> �

AB

+ �

BA

0

(the other three ases an be treated in the same way). We argue now as

for the lak of semiontinuity of F

0

(see subsetion 2.2).

Fix a on�guration (A;A

0

) 2 X �X

0

suh that jS

AA

0

j > 0. For every Æ > 0 we apply Lemma

3.1 to �nd a set E

Æ

� 
 suh that �E

Æ

\ �
 = A

0

\ �A, jE

Æ

j � Æ, and j�E

Æ

\ 
j � jA

0

\ �Aj+ Æ,

and then we set A

Æ

:= A nE

Æ

.

A Aδ

A'

A, Aδ

Figure 3: the sets A, A

0

, and A

Æ

.

Hene A

Æ

onverge to A in X as Æ ! 0. Moreover for the on�guration (A

Æ

;A) there holds

S

A

Æ

A

0

= �, S

B

Æ

A

0

= A

0

= S

BA

0

[S

AA

0

, jS

A

Æ

B

Æ

j � jS

AB

j + jS

AA

0

j + Æ, while S

A

Æ

B

0

= S

AB

0

and

S

B

Æ

B

0

= S

BB

0

. Then

�

gen

(A

Æ

;A

0

) � �

gen

(A;A

0

)� (�

AB

+ �

BA

0

� �

AA

0

) jS

AA

0

j+ Æ ;

and sine both (�

AB

+ �

BA

0

� �

AA

0

) and jS

AA

0

j are positive we obtain

lim inf

Æ!0

�

gen

(A

Æ

;A

0

) < �

gen

(A;A

0

) ;

whih proves that �

gen

is not lower semiontinuous at (A;A

0

).

We prove now the opposite impliation. Let us assume that (2:24) holds and let be given

A

n

! A in X and A

0

n

! A

0

in X

0

. We may assume that sup

n

�

gen

(A

n

;A

0

n

) is �nite, so that
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j�A \ 
j and jL

A

0

B

0

j are �nite. By applying Lemma 3.2 with M := �A \ �
, we obtain the

following lower bound:

lim inf

n!1

�

j�A

n

\ 
j � j�A \ 
j � j(�A

n

4�A) \ �
j

�

� 0 : (3:1)

By the lower semiontinuity of the perimeter, the funtional A

0

7! �

gen

(A;A

0

) is lower semiontin-

uous on X

0

. Hene

lim inf

n!1

�

gen

(A;A

0

n

) � �

gen

(A;A

0

) : (3:2)

On the other hand, let �

n

(x) and �̂

n

(x) denote respetively the surfae energy densities at x of

the on�gurations (A

n

;A

0

n

) and (A;A

0

n

) (for every n and every x 2 �
); one easily veri�es that

if x =2 �A

n

4�A then �

n

(x) = �̂

n

(x), while if x 2 �A

n

4�A the inequalities in (2:24) implies

�

n

(x) � �̂

n

(x) � �

AB

. Thus we an write

�

gen

(A

n

;A

0

n

) = �

AA

0

j�A

n

\ �
j+

Z

�


�

n

(x) + jL

A

0

n

B

0

n

j

� �

AA

0

j�A

n

\ �
j+

Z

�


�̂

n

(x)� �

AB

j(�A

n

4�A) \ �
j+ jL

A

0

n

B

0

n

j

� �

gen

(A;A

0

n

) + �

AB

�

j�A

n

\ 
)j � j�A \ 
)j � j(�A

n

4�A) \ �
j

�

:

Now we take the lower limit as n!1, and with the help of (3:1) and (3:2) we dedue

lim inf

n!1

�

gen

(A

n

;A

0

n

) � �

gen

(A;A

0

) :

Proof of Theorem 2.1

The oeÆients in the funtionals �

0

given in (2:4) ful�ll the generalized wetting ondition

(2:24), and then �

0

is lower semiontinuous on X �X

0

by Theorem 2.9.

Let be given now A

n

! A inX so that F

0

(A

n

) is bounded. The sets A

n

have uniformly bounded

perimeters in �
 (f. (1:4)); then the sequene (S

A

n

W

) is pre-ompat in X

0

, and possibly passing

to a subsequene we may assume that it onverge to some A

0

2 X

0

. Now identity (2:5) and the

semiontinuity of �

0

imply

lim inf

n!1

F

0

(A

n

) = lim inf

n!1

�

0

(A

n

;S

A

n

W

) � �

0

(A;A

0

) : (3:3)

Inequality (3:3) shows that the left hand side of (2:6) is larger than the right hand side. To obtain

the equality it suÆes to �nd, for every on�guration (A;A

0

) 2 X �X

0

with �nite energy �

0

, an

approximating sequene A

n

! A suh that

lim inf

n!1

F

0

(A

n

) � �

0

(A;A

0

) : (3:4)

Here we use an argument similar to the �rst part of the proof of Theorem 2.9: by Lemma 3.1, for

every n > 0 we �nd a set E

n

with �nite perimeter in 
 suh that

(i) �E

n

\ �
 = A

0

4�A,

(ii) jE

n

j � 1=n and j�E

n

\ 
j � jA

0

4�Aj+ 1=n.

We set A

n

:= A4E

n

: by (i) we have S

A

n

W

= �A

n

\ �
 = A

0

and by (ii)

A

n

! A in X ; j�A

n

\ 
j � j�A \ 
j+ jA

0

4�Aj+ 1=n :

13



Hene

F

0

(A

n

) � �

AB

�

jS

AB

j+ jA

0

4�Aj+ 1=n

�

+ �

AW

jA

0

j+ �

BW

jB

0

j+ j�A

0

j

= �

AB

jS

AB

j+ �

AW

jA

0

\ �Aj+ (�

AW

+ �

AB

) jA

0

n �Aj +

+ �

BW

jB

0

n �Aj+ (�

BW

+ �

AB

) jB

0

\ �Aj+ j�A

0

j+

�

AB

n

= �

0

(A;A

0

) +

�

AB

n

:

We obtain (3:4) by letting n tend to 1.

4. Proof of the �-onvergene result

In this setion we prove Theorem 2.6. In order to simplify the proof, we will make two

additional assumptions: �rst we will assume that �
 is of lass C

2

. This restrition is used in the

proof of statement (iii) of Theorem 2.6, and an be relaxed with some additional work to �
 of

lass C

1

. However we annot go below the C

1

regularity. The seond assumption onerns the

potentials V and W :

there exists m so that �m � �; �

0

; �; �

0

� m, W (x) � W (m) and V (x) �

V (m) for x � m, and W (x) �W (�m) and V (x) � V (�m) for x � �m.

(4:1)

For instane, this ondition is veri�ed when V and W are inreasing on [m;+1) and dereasing

on (�1:�m℄ for some positive m. Assumption (4:1) will allow us to use the trunation argument

given Lemma 4.1. It an be removed but in that ase the proof of Proposition 4.7 would require

more deliates trunation arguments whih we prefer to avoid.

>From now on we always use the term \sequene" also to denote families (of funtions) labelled

by the ontinuous parameter ", whih tends to 0. On this line, a subsequene of (u

"

) is any sequene

(u

"

n

) suh that "

n

! 0 as n!1, and we say that (u

"

) is pre-ompat if every subsequene admits

a onverging sub-subsequene. To simplify the notation we often omit to relabel subsequenes, and

we say \a ountable sequene (u

"

)" to mean a sequene de�ned only for ountably many " = "

n

suh that "

n

! 0 as n!1 (we refer in partiular to statements (i) in Theorems 4.2 and 4.4).

To begin we introdue the loalization of the funtionals F

"

: for every domain A � R

3

, every

set A

0

� �A and every u 2 H

1

(A) we set

F

"

(u;A;A

0

) := "

Z

A

jDuj

2

+

1

"

Z

A

W (u) + �

"

Z

A

0

V (Tu) (4:2)

(aording to our onvention the measure in the last integral is H

2

). Notie that F

"

(u) =

F

"

(u;
; �
) for every u 2 H

1

(
).

Lemma 4.1. Let be given a domain A � R

3

and a set A

0

� �A, and a sequene (u

"

) � H

1

(A)

with uniformly bounded energies F

"

(u

"

; A;A

0

). If we take the trunated funtions �u

"

(x) := (u

"

(x)^

m)_�m, then F

"

(�u

"

; A;A

0

) � F

"

(u

"

; A;A

0

), and both k�u

"

�u

"

k

L

1

(A)

and kT �u

"

�Tu

"

k

L

1

(A

0

)

vanish

as "! 0.

Proof. The inequality F

"

(�u

"

; A;A

0

) � F

"

(u

"

; A;A

0

) follows immediately from (4:1). The rest of the

statement follows from the fat that both W and V have growth at least linear at in�nity and the

integrals

R

W (u

"

) and

R

V (Tu

"

) vanish as " ! 0. This is a standard argument, and we omit it

(see for instane [AB℄, Lemma 1.11).

In order to prove Theorem 2.6 we need some �-onvergene results whih we group in the

following subsetion.
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4.1. Preliminary onvergene results

We begin with the basi �-onvergene result for funtionals of Cahn-Hilliard type: for every

domain A � R

3

and every real funtion u 2 H

1

(A) we set

G

1

"

(u;A) := "

Z

A

jDuj

2

+

1

"

Z

A

W (u) ; (4:3)

where W is the double-well potential given in subsetion 2.3. Notie that G

1

"

(u;A) = F

"

(u;A;�).

Theorem 4.2. (see [MM℄, [Mo℄)

For every domain A � R

3

the following three statements hold:

(i) every ountable sequene (u

"

) � H

1

(A) with uniformly bounded energies G

1

"

(u

"

; A) is pre-

ompat in L

1

(A) and every luster point belongs to BV (A; I);

(ii) for every u 2 BV (A; I) and every sequene (u

"

) � H

1

(A) suh that u

"

! u in L

1

(A) there

holds

lim inf

"!0

G

1

"

(u

"

; A) � �H

2

(Su) ;

(iii) for every u 2 BV (A; I) there exists a sequene (u

"

) � H

1

(A) suh that u

"

! u in L

1

(A) and

lim sup

"!0

G

1

"

(u

"

; A) � �H

2

(Su) ;

moreover when Su is a losed Lipshitz surfae in A, we may require that eah u

"

is (C=")-

Lipshitz and (u

"

) onverges to u uniformly on every set with positive distane from Su (here

C is the supremum of

p

W in [�; �℄).

Proof. This version of the Modia-Mortola theorem an be found in [Mo1℄ (see also [Al℄). However

the seond part of statement (iii) is not expliitely stated there, and therefore we briey sketh its

proof.

Let ' : R ! [�; �℄ be an optimal pro�le for the 1-dimensional funtional

R

( _v

2

+W (v)), that

is, a global solution of the ordinary di�erential _' =

p

W (') with '(0) arbitrarily taken in ℄�; �[.

Then ' is inreasing, onverges to � at +1 and to � at �1, and satis�es

Z

R

( _'

2

+W (')) =

Z

R

2

p

W (') _' = H(�)�H(�) = � : (4:4)

Let now be given u 2 BV (
; I) suh that Su is a Lipshitz surfae, and denote by d the oriented

distane from Su given by d(x) := dist (x; Su) when x 2 fu = �g, and by d(x) := �dist (x; Su)

when x 2 fu = �g. We set u

"

(x) := '

�

d(x)="

�

for every " > 0 and x 2 
. One readily heks

that eah u

"

is (C=")-Lipshitz (beause ' is C-Lipshitz) and onverge to u uniformly on every

set with positive distane from Su. Taking into aount that jDdj = 1 a.e. in 
, by the oarea

formula one gets

G

1

"

(u

"

; A) =

Z

A

1

"

�

_'

2

(d=") +W (d=")

�

=

Z

R

�

_'

2

(t) +W (t)

�

H

2

(�

"t

) dt ; (4:5)

where �

s

:= fx : d(x) = sg is the s-level set of d. Sine Su is Lipshitz, H

2

(�

s

) onverges to

H

2

(Su) as s! 0, and if we use (4:4) and apply the dominated onvergene theorem in (4:5), we

obtain that G

1

"

(u

"

; A) onverges to �H

2

(Su) as "! 0.

Theorem 4.2 aptures ompletely the asymptoti behaviour of the energies F

"

in the interior

of 
, and justi�es the term �H

2

(Su) in the limit energy � (see (2:13)). The seond term in �,

namely

R

�


�

�

H(Tu)�H(v)

�

�

, will be derived from the following proposition.
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Proposition 4.3. Assume that A � R

3

is a domain with boundary pieewise of lass C

1

, and A

0

is a subset of �A with Lipshitz boundary, and let be given u 2 L

1

(A) , v 2 L

1

(A

0

). Then

(i) for every sequene (u

"

) � H

1

(A) suh that u

"

! u in L

1

(A) and Tu

"

! v in L

1

(A

0

) there

holds

lim inf

"!0

G

1

"

(u

"

; A) �

Z

A

0

�

�

H(Tu)�H(v)

�

�

;

(ii) if v is onstant on A

0

and u is onstant on A with u � � or u � �, there exists a sequene

(u

"

) suh that Tu

"

= v on A

0

, u

"

onverges uniformly to u on every set with positive distane

from A

0

and

lim sup

"!0

G

1

"

(u

"

; A) �

Z

A

0

�

�

H(Tu)�H(v)

�

�

;

moreover eah u

"

an be taken (C=")-Lipshitz, where C is the supremum of

p

W over any

interval whih ontains the values of u and v.

Proof. Statement (i) is the key lemma in the proof of the main result of [Mo2℄, statement (ii) is

essentially ontained in that paper, but not stated in this form. The proof is a modi�ation of the

argument of the proof of Theorem 4.2. We onsider the ase u � � and v � , with � <  < �

(the other ases an be treated in a similar way).

Let ' : [0;+1[! [; �℄ be a solution of the ordinary di�erential _' =

p

W (') with '(0) = ;

then ' is inreasing, onverges to � at +1, and satis�es (f. (4:4))

Z

1

0

( _'

2

+W (')) =

Z

1

0

2

p

W (') _' = H(�)�H() :

Denote by d(x) the distane of x from A

0

and set u

"

(x) := '

�

d(x)="

�

for every " > 0 and x 2 
.

One readily heks that u

"

onverge to u uniformly on every set with positive distane from A

0

,

u

"

is (C=")-Lipshitz and G

1

"

(u

"

; A) onverge to

�

H(�) �H()

�

H

2

(A

0

).

The last term in �, namely H

1

(Sv), requires a more deliate treatment. The next steps

are ruial in the proof of the statements (i) and (ii) of Theorem 2.6. We begin with a singular

perturbation theorem for one-dimensional funtionals: for every interval E � R and every funtion

v 2 L

1

(E) we set

G

2

"

(v; E) :=

"

2�

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx + �

"

Z

E

V (v) : (4:6)

Here we have replaed the usual Dirihlet integral by a nonloal energy whih is diretly related to

the square of the norm of the spae H

1

2

(E). We will use G

2

"

(v; E) to write the value of F

"

(u;B \


; B \ �
) in term of the trae v of u on B \ �
 in the partiular ase where B \ �
 is a at disk

(see Proposition 4.7).

Theorem 4.4. (f. [ABS1℄)

Let V be given as in subsetion 2.3. Then the following statements hold:

(i) every ountable sequene (v

"

) � L

1

(E) with uniformly bounded energies G

2

"

(v

"

; E) is pre-

ompat in L

1

(E) and every luster points belongs to BV (E; I

0

).

(ii) For every v 2 BV (E; I

0

) and every sequene (v

"

) suh that v

"

! v in L

1

(E) there holds

lim inf

"!0

G

2

"

(v

"

; E) � #(Sv) (4:7)

where #(Sv) denotes as usual the number of points in Sv.

In order to prove Theorem 4.4 we need the following estimate:
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Lemma 4.5. Let be given Æ suh that 0 < Æ <

�

0

��

0

2

. For every interval J � E, " > 0

and v 2 L

1

(E), let A = A(J; "; v) and B = B(J; "; v) be the sets of all points x 2 J suh that

v(x) � �

0

+ Æ and v(x) � �

0

� Æ respetively, and set

a = a(J; "; v) :=

jA \ J j

jJ j

; b = b(J; "; v) :=

jB \ J j

jJ j

;

� := inf

�

V (t) : �

0

+ Æ � t � �

0

� Æ

	

:

(4:8)

Then for " �

��jJj

(�

0

��

0

�2Æ)

2

we have

G

2

"

(u

"

; J) �

"

�

(�

0

� �

0

� 2Æ)

2

�

log(ab) + log(�

"

)

�

: (4:9)

Proof. The proof relies on the following key inequality, whih is obtained by applying Proposition

6.1 with 	(s) := 1=s

2

and [t; y℄ := J

Z

A�B

dx

0

dx

jx

0

� xj

2

� log

h

1 +

ab

1� a� b

i

: (4:10)

By (4:6) and (4:8) we get

G

2

"

(v; J) �

"

2�

Z

(A�B)[(B�A)

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx + �

"

Z

Jn(A[B)

V (v)

�

"

�

(�

0

� �

0

� 2Æ)

2

Z

A�B

dx

0

dx

jx

0

� xj

2

+ �

"

�

�

�

J n (A [B)

�

�

and by (4:10)

�

"

�

(�

0

� �

0

� 2Æ)

2

log

h

1 +

ab

1� a� b

i

+ �

"

�(1� a� b) jJ j

�

"

�

(�

0

� �

0

� 2Æ)

2

h

log(ab)� log(1� a� b) +

��

"

�jJ j

"(�

0

� �

0

� 2Æ)

2

(1� a� b)

i

now we apply the inequality � log t+Mt � logM with M :=

��

"

�jJj

"(�

2

��

2

�2Æ)

2

and t := 1� a� b, and

realling the assumptions on " we get

�

"

�

(�

0

� �

0

� 2Æ)

2

h

log(ab) + log

�

��

"

�jJ j

"(�

0

� �

0

� 2Æ)

2

�i

�

"

�

(�

0

� �

0

� 2Æ)

2

�

log(ab) + log�

"

�

:

Proof of Theorem 4.4

The proof redues to the following statement: given a ountable sequene (v

"

) suh that

G

2

"

(v

"

; E) is bounded, possibly passing to a subsequene we have that v

"

onverge in L

1

(E) to

some v 2 BV (E; I

0

), and inequality (4:7) holds.

By a standard trunation argument we an assume from the beginning that �

0

� v

"

� �

0

for

every " > 0. Possibly passing to a subsequene we an assume that the (v

"

) onverges weakly* in

L

1

(E) to some funtion v and generates a Young measure x 7! �

x

(for a detailed exposition of

the theory of Young measures, we refer to [Va1-2℄).
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Sine �

"

!1 as "! 0 and G

2

"

(v

"

; E) is bounded in ", we dedue that the integral

R

E

V (v

"

)

vanishes as "! 0, and then

Z

E

�

Z

R

V (t) d�

x

(t)

�

dx = 0 :

AsW (t) = 0 if and only if t = �

0

or t = �

0

, the probability measure �

x

is supported on I

0

= f�

0

; �

0

g

for a.a. x; in other words there exists a funtion � : E ! [0; 1℄ suh that

�

x

= �(x) � Æ

�

0

+ (1� �(x)) � Æ

�

0

for a.e. x 2 E. (4:11)

We laim that � belongs to BV (E; f0; 1g). Take indeed an interval J � E and Æ suh that

0 < Æ <

�

0

��

0

2

, and de�ne a

"

:= a(J; "; v

"

) and b

"

:= b(J; "; v

"

) as in (4:8). By Lemma 4.5 we

obtain that for " small enough

G

2

"

(v

"

; J) �

"

�

(�

0

� �

0

� 2Æ)

2

�

log(a

"

b

"

) + log�

"

�

: (4:12)

Furthermore one readily heks that when "! 0

a

"

! a(J) :=

1

jJj

R

J

� and b

"

! b(J) :=

1

jJj

R

J

(1� �) :

If a(J) � b(J) > 0, when we pass to the limit in (4:12) we get

lim inf

"!0

G

2

"

(v

"

; J) �

K

�

(�

0

� �

0

)

2

=  (4:13)

(reall that " log�

"

! K and Æ an be taken arbitrarily small).

Consider now the set S of all x 2 E suh that the approximate limit of � at x does not exists

or belongs to ℄0; 1[. For every �nite integer m � #(S) we an �nd pairwise disjoint open intervals

J

i

, i = 1; : : : ;m, suh that J

i

\ S 6= �. Then a(J

i

) � b(J

i

) > 0 and (4:13) beomes

lim inf

"!0

G

2

"

(v

"

; J

i

) �  ;

and sine G

2

"

(v

"

; �) is super-additive on disjoint sets,

lim inf

"!0

G

2

"

(v

"

; E) �

m

X

i=1

lim inf

"!0

G

2

"

(v

"

; J

i

) � m : (4:14)

Hene S is �nite, and sine � has approximate limit equal to 0 or 1 outside of S, we dedue that

� belongs to BV (E; f0; 1g) and S� = S. The laim is proved.

Aording to (4:11) we dedue that �

x

is a Dira mass for almost every x; hene v

"

onverge

strongly to v and

v(x) := �

0

�(x) + �

0

(1� �(x)) for a.e. x 2 E.

Then v belongs to BV (E; I

0

), Sv = S� = S and by taking m = #(S) in (4:14) we get

lim inf

"!0

G

2

"

(v

"

; E) � #(Sv) :

Remark 4.6. In [ABS1℄, we proved that the lower bound given in (4:9) is in fat optimal: for every

v 2 BV (E; I

0

) we an �nd a sequene (v

"

) � H

1

(E) suh that v

"

7! v in L

1

(E) and

lim

"!0

G

2

"

(v

"

; E) = #(Sv) : (4:15)
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Therefore the funtionals G

2

"

(�; E) �-onverge in L

1

(E) to the funtional whih is equal to #(Sv)

for every v 2 BV (E; I

0

) and to +1 elsewhere.

Using Theorem 4.4 and a suitable sliing argument we an obtain the optimal lower bound

for the energies F

"

(u;B \ 
; B \ �
) when B is a ball entered on �
 and B \ �
 is a at disk

(Proposition 4.7). Later on we will show that this atness assumptions an be dropped when B is

suÆiently small.

Proposition 4.7. For every r > 0, let D

r

be the open half-ball of all x = (x

1

; x

2

; x

3

) 2 R

3

suh

that jxj < r and x

3

> 0, and E

r

the disk of all x suh that jxj < r and x

3

= 0. Let (u

"

) � H

1

(D

r

)

be a ountable sequene with uniformly bounded energies F

"

(u

"

; D

r

; E

r

). Then the traes Tu

"

are

pre-ompat in L

1

(E

r

) and every luster point belongs to BV (E

r

; I

0

); moreover if Tu

"

! v in

L

1

(E

r

), then

lim inf

"!0

F

"

(u

"

; D

r

; E

r

) � 

�

�

�

Z

E

r

\Sv

�

v

�

�

�

: (4:16)

Proof. By Lemma 4.1 we an assume that ju

"

j � m where m is the onstant in (4:1). To simplify

the notation we write D and E.

The idea is to redue to statement (i) of Theorem 4.4 via a suitable sliing argument. We �x

now an arbitrary unit vetor e in the plane P := fx

3

= 0g, and we denote by M the orthogonal

omplement of E in P and by � the projetion of R

3

onto M . The segment �(E) is alled E

e

; for

every y 2 E

e

, E

y

denotes the segment �

�1

(y) \ E and D

y

the half-disk �

�1

(y) \D.

 e  e

 M

 M
 E

 E

 D

 E e

 E e

 y D
 E y

 y

 y

 x 3

Figure 4: the sets D, E, E

e

, E

y

and D

y

.

For every y 2 E

e

and every funtion u on D, u

y

denotes the restrition of u on D

y

, and for

every funtion v on E, v

y

denotes the restrition of v on E

y

. If u 2 H

1

(D), then for a.e. y 2 E

e

the funtion u

y

belongs to H

1

(D

y

), the gradient of u

y

agrees a.e. in D

y

with the projetion of Du

on the plane spanned by the vetor e and the axis x

3

, and the trae of u

y

on E

y

agrees a.e. in E

y

with (Tu)

y

(f. Proposition 6.8). Taking into aount these fats and Fubini's theorem, for every

" > 0 we get

F

"

(u;D;E) � "

Z

D

jDuj

2

+ �

"

Z

E

V (Tu)

�

Z

E

e

h

Z

D

y

jDu

y

j

2

+ �

"

Z

E

y

V (Tu

y

)

i

dy

We apply now the trae inequality (6:6) to eah funtion u

y

on the half-disk D

y

, and then

F

"

(u;D;E) �

Z

E

e

h

"

2�

Z

(E

y

)

2

�

�

�

Tu

y

(x

0

)� Tu

y

(x)

x

0

� x

�

�

�

dx

0

dx+ �

"

Z

E

y

V (Tu

y

)

i

dy

=

Z

E

e

G

2

"

(Tu

y

; E

y

) dy : (4:17)
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Let us prove that the sequene (Tu

"

) is pre-ompat in L

1

(E). To this end it suÆes to show

that the family F := fTu

"

g satis�es the assumptions of Theorem 6.6 for every of the unit vetor

e. Thus we �x Æ > 0 and we hoose a onstant C suh that

F

"

(u

"

; D;E) � C ; (4:18)

for every " we take v

"

: E ! [�m;m℄ de�ned by

v

y

"

:=

(

Tu

y

"

for all y 2 E

e

s.t. G

2

"

(Tu

y

"

; E

y

) � 2mrC=Æ,

�

0

otherwise.

(4:19)

By (4:17), (4:18) and (4:19) we have v

y

"

= Tu

y

"

for all y 2 E

e

apart a subset of measure smaller than

Æ=(2mr). Hene v

"

= Tu

"

in E minus a set of measure smaller that Æ=m and, sine jTu

"

j � m,

we dedue that kv

"

� Tu

"

k

L

1

(E)

� Æ. Therefore the family F

Æ

:= fv

"

g is Æ-dense in F in the

sense of subsetion 6.3; by (4:19), G

2

"

(v

y

"

; E

y

) � 2mrC=Æ for every y 2 E

e

and every ", and hene

statement (i) of Theorem 4.4 implies that the sequene (v

y

"

) is pre-ompat in L

1

(E

y

). Thus F

satis�es ondition (6:9) in Theorem 6.6 for every e, and then the sequene (Tu

"

) is pre-ompat

in L

1

(E).

It remains to prove that if Tu

"

! v in L

1

(E

r

), then v belongs to BV (E

r

; I

0

) and inequality

(4:16) holds. replaing u by u

"

in (4:2) and passing to the limit as " ! 0, by Fatou's lemma we

dedue that

lim inf

"!0

F

"

(u

"

; D;E) �

Z

E

e

lim inf

"!0

G

2

"

(Tu

y

"

; E

y

) dy ;

and then lim inf G

2

"

(Tu

y

"

; E

y

) is �nite for a.e. y 2 E

e

.

Sine Tu

"

! v in L

1

(E

r

), possibly passing to a subsequene we have that Tu

y

"

! v

y

in

L

1

(E

r

) for a.e. y 2 E

e

(f. Remark 6.7). Then statements (i) and (ii) of Theorem 4.4 yield

v

y

2 BV (E

y

; I

0

) and

lim inf

"!0

F

"

(u

"

; D;E) �

Z

E

e

#(Sv

y

) dy : (4:20)

The right hand side of (4:20) is �nite, and then Proposition 6.9 implies that v belongs to BV (E; I

0

)

and that Sv

y

agrees with Sv \ E

y

for a.e. y 2 E

e

. By (6:14), we may rewrite (4:20) as

lim inf

"!0

F

"

(u

"

; D;E) � 

Z

D\Sv

h�

v

; ei : (4:21)

Finally (4:16) follows from (4:21) by hoosing a suitable unit vetor e.

4.2. Redution to the at ase

The ontribution of the wall to the limit energy � will be obtained by estimating the asymp-

toti behaviour of F

"

(u;B \
; B \ �
) when B is a small ball entered on �
. This estimate will

be derived by Proposition 4.7, provided we an evaluate the error we make when we perturb B\


to get an half-ball. We expet of ourse that this error goes to zero with the radius of B and that it

is ontrolled by the atness of the boundary �
, but making this argument preise requires some

omputations. We �rst desribe the behaviour of F

"

under hange of variable.

De�nition 4.8. Given two domains A

1

; A

2

� R

3

and a bi-Lipshitz homeomorphism 	 : A

1

!

A

2

, the isometry defet Æ(	) of 	 is the smallest onstant Æ suh that

dist

�

D	(x); O(3)

�

� Æ for a.e. x 2 A

1

, (4:22)
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here O(3) is the set of linear isometries on R

3

, and D	(x) is regarded as a linear mapping of R

3

into R

3

; the distane between linear mappings is indued by the norm k � k, whih for every T is

de�ned as the supremum of jTvj over all v suh that jvj � 1.

Given T and L suh that L is an isometry, the inequality kT �Lk � Æ with Æ < 1 implies that

T is invertible and kT

�1

� L

�1

k � Æ

Æ

(1 � Æ). Hene (4:22) implies that dist

�

D	

�1

(y); O(3)

�

�

Æ

Æ

(1� Æ) for a.e. y 2 A

2

, that is, Æ(	

�1

) � Æ(	)

Æ

(1� Æ(	)).

Inequality (4:22) also implies that kD	k � 1 + Æ a.e. in A

1

, and then 	 is (1 + Æ)-Lipshitz

on every onvex subset of A

1

; similarly, 	

�1

is (1� Æ)

�1

-Lipshitz on every onvex subset of A

2

.

Proposition 4.9. Let be given A

1

; A

2

and 	 as above, and assume that 	 maps a ertain set

A

0

1

� �A

1

onto A

0

2

� �A

2

. Then for every u 2 H

1

(A

2

) there holds

F

"

(u;A

2

; A

0

2

) �

�

1� Æ(	)

�

5

F

"

(u Æ	; A

1

; A

0

1

) : (4:23)

Proof. Let Æ := Æ(	) and assume that Æ < 1. By (4:22) we get kD	k � 1 + Æ a.e. in A

1

, and then

�

�

D(u Æ	)

�

�

� (1 + Æ)

�

�

(Du) Æ	

�

�

a.e. in A

1

. (4:24)

Let g and g

0

denote the inverse of 	 and the restrition of the inverse of 	 to the boundary of

A

2

. The maps g and g

0

are loally (1� Æ)

�1

-Lipshitz, and then the Jaobian determinants satisfy

jJgj � (1 � Æ)

�3

a.e. on A

2

and jJg

0

j � (1 � Æ)

�3

a.e. on �A

2

. Using these estimates and the

inequality (1 � Æ)

�1

� 1 + Æ, one an derive (4:23) from (4:24) by the usual hange of variable

formula.

Proposition 4.10. For every x 2 �
 and every positive r smaller than a ertain ritial value

r

x

> 0, there exists a bi-Lipshitz map 	

r

: D

r

! 
 \ B

r

(x) suh that

(a) 	

r

takes D

r

onto 
 \B

r

(x) and E

r

onto �
 \ B

r

(x);

(b) 	

r

is of lass C

1

on D

r

and kD	

r

� Ik � Æ

r

everywhere in D

r

, where Æ

r

! 0 as r ! 0.

(Here I denotes the identity map on R

3

). In partiular the isometry defet of 	

r

vanishes as

r ! 0.

Proof. We assume that x = 0 and the tangent plane T

x

(�
) agrees with the plane fx

3

= 0g, and

we write B

r

for B

r

(x). For every positive  < 1 and for every r suÆiently small, we onstrut a

map 	 whih ful�lls (a) and kD	� Ik � O().

Sine �
 is of lass C

1

, for r suÆiently small we redue to the situation desribed in �gure

5 below:

Ψ1 Ψ2 Ψ1
−1

0

 x3
 AE  × (0,γ r)r

 Dr

 Br
γ

Ω ∩ Bγ
r

Ω

 x = 0 γ r

 graph of  f : E  → (−γ r, γ r)r

Figure 5: onstrution of 	 := 	

�1

1

Æ	

2

Æ	

1

.

Here B



r

is the set of all x 2 B

r

suh that �r < x

3

< r; the map 	

1

whih takes D

r

\ B



r

into the ylinder E

r

� (0; r) is given by

	

1

(x

1

; x

2

; x

3

) :=

�

x

1

p

1� (x

3

=r)

2

;

x

2

p

1� (x

3

=r)

2

; x

3

�

:
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For r small enough, 	

1

takes the set 
\B



r

into a set of the form A :=

�

x 2 R

3

s.t. (x

1

; x

2

) 2 E

r

and f(x

1

; x

2

) < x

3

< r

	

, where f is a suitable real funtion of lass C

1

on E

r

and satis�es

f(0) = 0, Df(0) = 0, jDf j � 

2

on E

r

. The map 	

2

whih takes the ylinder E

r

� (0; ) into A

is given by

	

2

(x

1

; x

2

; x

3

) :=

�

x

1

; x

2

; x

3

+

�

1�

x

3

r

�

2

f(x

1

; x

2

)

�

:

If I denote the identity map on R

3

, then kD	

1

� Ik = O(

2

) and kD	

2

� Ik = O(); therefore

the map 	 := 	

�1

1

Æ	

2

Æ	

1

(extended to the identity in D

r

n B



r

) satis�es (a), is of lass C

1

on

D

r

and kD	� Ik = O().

4.3. Proof of Theorem 2.6, part I

Proof of statement (i)

Let be given a ountable sequene (u

"

) � H

1

(
) suh that F

"

(u

"

) is bounded in ". Sine

F

"

(u

"

) � G

1

"

(u

"

;
) (see (2:12) and (4:3)), the sequene (u

"

) is pre-ompat in L

1

(
) by statement

(i) of Theorem 4.2.

We have to prove that the sequene of the traes (Tu

"

) is pre-ompat in L

1

(�
). In view

of Proposition 4.10 we an over �
 with �nitely many balls B

i

entered on �
 so that 
 \B

i

is

the image of an half-ball under a map 	

i

with isometry defet smaller than 1. Hene it suÆes to

show that the sequene (Tu

"

) is pre-ompat in L

1

(�
 \ B

i

) for every i.

For every �xed i, let �u

"

:= u

"

Æ 	

i

. Sine the isometry defet of 	

i

is smaller than 1,

Proposition 4.9 implies that F

"

(�u

"

; D

r

; E

r

) is bounded. Hene the pre-ompatness of the traes

Tu

"

in L

1

(�
 \B

i

) is implied by the pre-ompatness of the traes T �u

"

in L

1

(E

r

), whih in turn

follows from Proposition 4.7.

Proof of statement (ii)

Let be given a sequene (u

"

) � H

1

(
) suh that u

"

! u 2 BV (
; I) in L

1

(
) and Tu

"

! v 2

BV (�
; I

0

) in L

1

(�
). We have to show that

lim inf

"!0

F

"

(u

"

) � �(u; v) : (4:25)

Clearly we an assume that the liminf at the left hand side of (4:25) is �nite.

For every " > 0 let �

"

be the energy distribution assoiated with the on�guration u

"

, that is,

the positive measure whih for every Borel set B � R

3

is given by

�

"

(B) := "

Z


\B

jDu

"

j

2

+

1

"

Z


\B

W (u

"

) + �

"

Z

�
\B

V (Tu

"

) : (4:26)

Then the total mass k�

"

k of the measure �

"

is equal to F

"

(u

"

), and possibly passing to a subse-

quene we an assume that k�

"

k is bounded and that �

"

onverges in the sense of measures to

some �nite measure � on R

3

.

We also assoiate to eah of the three terms in (2:13) whih give �(u; v) the energy distributions

�

1

, �

2

and �

3

de�ned by

�

1

(B) := �H

2

(Su \ B) ; �

2

(B) :=

Z

�
\B

�

�

H(Tu)�H(v)

�

�

; �

3

(B) := H

1

(Sv \ B) :

Thus �(u; v) is equal to k�

1

k+ k�

2

k+ k�

3

k, and sine the measures �

i

are mutually singular and

lim inf F

"

(u

"

) = lim inf k�

"

k � k�k, inequality (4:25) follows from

� � �

i

for i = 1; 2; 3. (4:27)
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We prove that � � �

1

by showing that �(B) � �

1

(B) for all sets B � R

3

suh that B \ 
 is

a Lipshitz domain and �(�B) = 0 (one readily heks that this lass is large enough to imply the

inequality �(B) � �

1

(B) for all Borel sets B). Indeed for suh a B there holds

�(B) = lim

"!0

�

"

(B) � lim inf

"!0

G

1

"

(u

"

; B \ 
) � �H

2

(Su \ B) = �

1

(B) ;

where �rst equality follows from the assumption �(�B) = 0, the �rst inequality follows from (4:26)

and (4:3), and the seond one by statement (ii) of Theorem 4.2 with A := B \ 
.

We prove that � � �

2

in the same way: taken B as before we get

�(B) � lim inf

"!0

G

1

"

(u

"

; B \ 
) �

Z

�
\B

�

�

H(Tu)�H(v)

�

�

= �

2

(B)

(apply statement (ii) of Proposition 4.3 with A := B \ 
 and A

0

:= B \ �
).

The inequality � � �

3

requires a di�erent argument. Sine �

3

is the restrition of H

1

to the

reti�able set Sv multiplied by the fator , the following density estimate will suÆe:

lim

r!0

�(B

r

(x))

2r

�  for H

1

-a.e. x 2 Sv. (4:28)

The limit at the left hand side of (4:28) is the one-dimensional density of the measure � at x.

Sine Sv is one-reti�able, this density exists and agrees with the Radon-Nykodim derivative of

the measure � with respet to �

3

for H

1

-a.e. x 2 Sv.

In fat we prove (4:28) for every point x in Sv suh that the limit at left hand side of (4:28)

exists, the set Sv has 1-dimensional density equal to one, and the unit normal �

v

is approximately

ontinuous at x (notie that these three onditions are veri�ed for H

1

-a.e. x 2 Sv).

We �x suh a point x. For r suÆiently small we hoose a map 	

r

as in Proposition 4.10; we

assume moreover that �(�B

r

(x)) = 0 (this ondition is veri�ed by all r but ountably many).

We set �u

"

:= u

"

Æ	

r

and �v := v Æ	

r

. Hene T �u

"

! �v in L

1

(E

r

), v 2 BV (E

r

; I

0

) and

�(B

r

(x)) = lim

"!0

�

"

(B

r

(x)) = lim

"!0

F

"

�

u

"

;
 \ B

r

(x); �
 \B

r

(x)

�

�

�

1� Æ(	

r

)

�

5

lim inf

"!0

F

"

(�u

"

; D

r

; E

r

)

�

�

1� Æ(	

r

)

�

5



�

�

�

Z

S�v\E

r

�

�v

�

�

�

; (4:29)

where the �rst inequality follows from (4:23) and the seond from (4:16).

Notie that Sv\B

r

(x) = 	

r

(S�v\E

r

), and �

v

�

	

r

(y)

�

= D	

r

(y) ��

�v

(y) for a.e. y 2 S�v; taking

into aount that kD	

r

� Ik � Æ

r

and Æ(	

r

) � Æ

r

where Æ

r

vanishes as r ! 0 (f. Proposition

4.10), and the hoie of the point x, one an easily prove that

�

�

�

Z

S�v\E

r

�

�v

�

�

�

= 2r + o(r) : (4:30)

Inequality (4:28) follows from (4:29) and (4:30).

4.4. Proof of Theorem 2.6, part II

We need the following extension result.
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Lemma 4.11. Let be given a domain A � R

3

and a real number m � j�j; j�j. Take " 2℄0; 1℄, a set

A

0

� �A, and a Lipshitz funtion v : A

0

! [�m;m℄. Then v admits an extension u : A! [�m;m℄

suh that Lip(u) � 1="+ Lip(v) and

G

1

"

(u;A) �

�

("Lip(v) + 1)

2

+ C

� �

j�Aj+ o(1)

�

� ; (4:31)

where C is the supremum of W on the interval [�m;m℄, the error o(1) is a funtion of " whih

depends only on the hoie of A and m (and not on v), and � is the in�mum between kv � �k

1

and kv � �k

1

.

Proof. Sine we an extend v to the rest of �A without inreasing its Lipshitz onstant, we assume

from the beginning that A

0

= �A. We also assume that � := kv � �k

1

(the other ase is similar).

Let U

t

be the set of all x 2 A suh that 0 < dist (x; �A) < t. We set u := v on �A and u = �

on AnU

"�

. Then u is (Lip(v)+1=")-Lipshitz on AnU

�"

, and we extend it to the rest of A without

inreasing its Lipshitz onstant. Then

G

1

"

(u;A) =

Z

U

"�

"jDuj

2

+

1

"

W (u) �

�

("Lip(v) + 1)

2

+ C

�

jU

"�

j

"

: (4:32)

Finally it is enough to notie that jU

t

j = t j�Aj+ o(t) beause �A is Lipshitz.

Statement (iii) of Theorem 2.6 is a diret orollary of the following approximation result.

Lemma 4.12. Let be given u 2 BV (
; I) and v 2 BV (�
; I

0

) so that Su and Sv are losed

manifolds of lass C

2

without boundary respetively in 
 and �
. Then for every � > 0 and every

" > 0 we an �nd u

"

2 H

1

(
) suh that

lim sup

"!0

ku

"

� uk

L

1

(
)

� � and lim sup

"!0

kTu

"

� vk

L

1

(�
)

� � ; (4:33)

lim sup

"!0

F

"

(u

"

) � �H

2

(Su) +

Z

�


�

�

H(Tu)�H(v)

�

�

+ H

1

(Sv) + � : (4:34)

Proof. Possibly modifying u and v in a negligible subset we an assume that they are onstant in

eah onneted omponent of 
 n Su and �
 n Sv respetively.

Let us �x some notation. We hoose a number m suh that �m � �; �; �

0

; �

0

� m and all

the funtions we onsider in this proof will take values in [�m;m℄. We �x a onstant C > 2m

whih is larger than the onstant C in Lemma 4.11, and of the suprema of

p

W , W and V on the

interval [�m;m℄. In partiular C is larger than the onstants in statement (iii) of Theorem 4.2 and

statement (ii) of Proposition 4.3. For every x 2 
 we set d(x) := dist (x; �
), while d

0

: �
 ! R

is the oriented distane from Sv de�ned by

d

0

(x) :=

�

dist (x; Sv) if x 2 fv = �

0

g,

�dist (x; Sv) if x 2 fv = �

0

g.

Sine Sv is a boundary in �
, the intersetion of a tubular neighborhoud of Sv and 
 is di�eo-

morphi to the produt of Sv and an half-disk. Suh di�eomorphism 	 an be onstruted as

follows: given x 2 
, let x

0

be the projetion of x on �
, let x

00

be the projetion of x

0

on Sv, and

set 	(x) :=

�

x

00

; d

0

(x

0

); d(x)

�

2 Sv � R � [0;+1[. Using the tubular neighborhoud theorem one

an show that the map 	 is well-de�ned and is a di�eomorphism of lass C

2

on 
 \ U for some

neighborhoud U of Sv (here we use the fat that �
 and Sv are of lass C

2

). Moreover 	 takes


 \ U into Sv � R�℄0;+1[ and �
 \ U into Sv � R � f0g, and for every x 2 �
, 	(x) = x and

D	(x) is an isometry.

24



Let A

r

be the set of all x 2 
 suh that dist (x; Sv) < r. Sine D	 is ontinuous, we dedue

that the isometry defet Æ

r

of the restrition of 	 to the A

r

satis�es

lim

r!0

Æ

r

= 0 : (4:35)

We denote by S

r

the set of all x 2 
 suh that d(x) = r, and we �x now r > 0 so that

(a) S

r

and S

2r

are Lipshitz surfaes,

(b) Su \S

r

is a Lipshitz urve (not neessarily onneted),

() the set A

r

is inluded in U .

Notie that (a) and () are veri�ed by every r suÆiently small, while (b) is veri�ed by a.e. r

suÆiently small (apply Sard's theorem to the funtion d on the surfae Su). We onstrut now a

partition of 
:

B

1

:=

�

x 2 
 : dist

�

x; Sv [ (Su \S

r

)

�

< 3r

	

,

A

1

:=

�

x 2 
 nB

1

: d(x) < r

	

,

B

2

:=

�

x 2 
 nB

1

: r < d(x) < 2r

	

,

A

2

:=

�

x 2 
 nB

1

: 2r < d(x)

	

,

 A1

 B1

 B2

 ∂Ω
 A2 A2

 Sv

 Su ∩ S r
 Su

 v=α'

 v=β'

 u=β u=α

 v=α'

 v=β'

Figure 6: the partition of 
.

For every " < r we onstrut the Lipshitz funtion u

"

in four steps: �rst we de�ne it on A

2

and A

1

, and then on B

2

and B

1

.

On the set A

2

we take u

"

as in the seond part of statement (iii) of Theorem 4.2 (with A

replaed by A

2

) and we extend it to �A

2

by ontinuity. Hene u

"

is (C=")-Lipshitz on A

2

, it

onverges to u pointwise on A

2

and uniformly on �A

2

\ �B

2

, and

F

"

(u

"

; A

2

;�) = G

1

"

(u

"

; A

2

) � �H

2

(Su \ A

2

) + o(1) � �H

2

(Su) + o(1) : (4:36)

The funtion u is onstant (equal to � or �) on every onneted omponent A of A

1

, while v

is onstant (equal to �

0

or �

0

) on �A \ �
 (f. �gure 6); thus we take u

"

as in statement (ii) of

Proposition 4.3 (with A

0

replaed by �A \ �
) and we extend it to �A

1

by ontinuity. Sine the

distane between two di�erent onneted omponents of A

1

is larger than r and C=" > 2m=r, then

u

"

is (C=")-Lipshitz on A

1

and agrees with v on �A

1

\ �
. Moreover it onverges to u pointwise

on A

1

and uniformly on �A

1

\ �B

2

, and satis�es

F

"

(u

"

; A

1

; �A

1

\ �
) = G

1

"

(u

"

; A

1

) �

Z

�


�

�

H(Tu

"

)�H(v)

�

�

+ o(1) : (4:37)

Sine the distane between A

1

and A

2

is equal to r and C=" � 2m=r, then u

"

is (C=")-Lipshitz

also on A

1

[A

2

. Then we an apply Lemma 4.11 to eah onneted omponent B of B

2

to extend

the funtion u

"

, whih is de�ned only on (�A

1

[ �A

2

) \ �B, to the rest of B; sine u is onstant
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(equal to � or �) on eah onneted omponent of B

1

, if we denote by �

"

the in�mum of ju

"

� uj

on (�A

1

[ �A

2

) \ �B

1

, then �

"

= o(1) and (4:31) yields

F

"

(u

"

; B

2

;�) = G

1

"

(u

"

; B

2

) �

�

(1 + C)

2

+ C

� �

j�B

2

j+ o(1)

�

�

"

= o(1) : (4:38)

Moreover u

"

is (2C=")-Lipshitz on B

2

.

It remains to onstrut u

"

on B

1

. This last step is slightly more elaborated than the previous

ones. First of all we de�ne a funtion w

"

: R � [0;+1[! [�m;m℄ as follows: in polar oordinates

� 2 [0; �℄, � 2 [0;+1℄,

w

"

(�; �) :=

8

<

:

(��

"

=") (��

0

+ (1� �)�

0

) + (1� ��

"

=")

�

0

+�

0

2

if 0 � � < "=�

"

,

��

0

+ (1� �)�

0

if "=�

"

� �.

For every t > 0 let D

t

be the half-disk of all y 2 R�℄0;+1[ suh that jyj < t, and let E

t

be the

segment of all y 2 R � f0g suh that jyj < t. A diret omputation gives

Z

D

1

jDw

"

j

2

=

(�

0

� �

0

)

2

�

log(�

"

=") +O(1) : (4:39)

We set �w

"

(x; y) := w

"

(y) for every x 2 Sv and y 2 R � [0;+1[, and using (4:39) we obtain

F

"

( �w

"

; Sv �D

2"

; Sv �E

2"

) =

=H

1

(Sv) �

h

"

Z

D

2"

jDw

"

j

2

+

1

"

Z

D

2"

W (w

"

) + �

"

Z

E

"=�

"

V (w

"

)

i

�H

1

(Sv) �

h

(�

0

� �

0

)

2

�

" log(�

"

=") + 2�"C + 2"C

i

= H

1

(Sv) + o(1) : (4:40)

We de�ne u

"

on the set A

"

by u

"

:= �w

"

Æ	, where 	 and A

"

are given at the beginning of this

proof. Sine the isometry defet of 	 on A

"

tends to 0 as " ! 0 (f. (4:35)), for " small enough

the funtion 	 is 2-Lipshitz (see De�nition 4.8 and subsequent remarks), and then 	 takes A

"

into Sv �D

2"

and �A

"

\ �
 into Sv �E

2"

. Then (4:40) and Proposition 4.9 yield

(1� Æ

"

)

5

F

"

(u

"

; A

"

; �A

"

\ �
) � F

"

( �w

"

; Sv �D

2"

; Sv �E

2"

) � H

1

(Sv) + o(1) : (4:41)

We extend u

"

by setting u

"

:= v in the rest of �B

1

\ �
; then u

"

= v on �
 n �A

"

. Now u

"

is

de�ned on the whole boundary of B

1

nA

"

and is (2C=")-Lipshitz. Hene we an use Lemma 4.11

to extend u

"

to B

1

nA

"

, and inequality (4:32) yields

F

"

�

u

"

; B

1

nA

"

; �(B

1

nA

"

) \ �


�

= G

1

"

�

u

"

; B

1

nA

"

�

�

�

(1 + 2C)

2

+ C

�

jU

"�

j

"

; (4:42)

where � is the in�mum of ku

"

� �k and ku

"

� �k, and U

"�

is the set of all x 2 B

1

n A

"

suh that

dist (x; �(B

1

nA

"

)) � �". Sine � � 2m and jU

"�

j = "� j�B

1

j+ o("�), (4:42) beomes

F

"

�

u

"

; B

1

nA

"

; �(B

1

nA

"

) \ �


�

� C

0

j�B

1

j+ o(1) ; (4:43)

where C

0

:= (1 + 2C)

2

+ C.

The funtion u

"

is now de�ned on the whole of 
 and is Lipshitz. Putting together inequalities

(4:36), (4:37), (4:38), (4:41) and (4:43) we �nally obtain

lim sup

"!0

F

"

(u

"

) � �H

2

(Su) +

Z

�


�

�

H(Tu)�H(v)

�

�

+ H

1

(Sv) + C

0

j�B

1

j : (4:44)
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Moreover u

"

! u pointwise on A

1

and A

2

, and u

"

= v on �
 n �A

"

, and then

lim sup

"!0

ku

"

� uk

L

1

(
)

� 2m

�

jB

1

j+ jB

2

j

�

and lim

"!0

kTu

"

� vk

L

1

(�
)

= 0 : (4:45)

Notie that j�B

1

j, jB

1

j and jB

2

j have order r, r

2

and r respetively, then taking r small enough

we dedue (4:34) and (4:33) from (4:44) and (4:45).

Proof of statement (iii) of Theorem 2.6

We �rst remark that every pair (u; v) 2 BV (
; I) � BV (�
; I

0

) an be approximated in

L

1

(
)�L

1

(�
) by a sequene (u

n

; v

n

) whih ful�ll the regularity assumptions of Lemma 4.12 and

satis�es H

2

(Su

n

) ! H

2

(Su) and H

1

(Sv

n

) ! H

1

(Sv) (see for instane [Gi℄, Theorem 1.24).

Therefore �(u

n

; v

n

) ! �(u; v). To onlude the proof of statement (iii) of Theorem 2.6, we just

need to apply Lemma 4.12 to eah pair (u

n

; v

n

) and then apply a suitable diagonal argument.

5. Appliation to apillary equilibrium with line tension

In this setion we desribe some mehanial features of the equilibrium on�gurations asso-

iated with the relaxation F

0

of the energy F

0

(see subsetion 2.2) or with the limit energy F

obtained in subsetion 2.3. We follow the notation of subsetions 2.2 and 2.4.

We reall that F

0

and F are given in term of �

0

and � (see (2:6), (2:16)), whih in turn an

be viewed as speial ases of the more general energy �

gen

given in (2:19) (following subsetion

2.4, here we view F as a funtion of A 2 X instead of u 2 BV (
; I), and � as a funtion of

(A;A

0

) 2 X �X

0

instead of (u; v) 2 BV (
; I)�BV (�
; I

0

)).

The funtional �

gen

depends on the bulk phase A and the boundary phase A

0

(whih determine

respetively the other bulk phase B and the other boundary phase B

0

). A on�guration A 2 X

is at equilibrium with respet to F

0

(resp. F ) under the volume onstraint jAj = v if and only if

there exists A

0

2 X

0

suh that (A;A

0

) is an equilibrium on�guration for �

0

(resp. �).

In subsetion 5.1 we briey desribe the equilibrium onditions for a on�guration (A;A

0

) with

respet to the energy �

gen

; in partiular we notie that, at equilibrium, the ontat angle � satis�es

a di�erent ondition than the usual Young's law (presribed by the apillary energy E

0

in (1:1)).

This modi�ation depends heavily whether the ontat line L



and the dividing line L

A

0

B

0

oinide

or not. In subsetion 5.2 we exhibit examples where L



and L

A

0

B

0

oinide and examples where

they do not.

5.1. Equilibrium onditions for the energy �

gen

The general model �

gen

is haraterized by the oeÆients �

AB

, �

AA

0

, �

AB

0

, �

BA

0

, �

BB

0

and

; we assume that the generalized wetting onditions (2:24) are veri�ed. A on�guration (A;A

0

)

is in equilibrium if it minimizes �

gen

under the volume onstraint jAj = v for some v suh that

0 < v < j
j, that is, if it solves the problem

min

A2X;jAj=v

A

0

2X

0

n

�

AB

jS

AB

j+ �

AA

0

jS

AA

0

j+ �

AB

0

jS

AB

0

j+

+ �

BA

0

jS

BA

0

j+ �

BB

0

jS

BB

0

j+ jL

A

0

B

0

j

o

:

(5:1)

We just reall here that sine �

gen

is lower semiontinuous on X�X

0

(Theorem 2.9), then the

minimum problem (5:1) admits a solution (A;A

0

) where A and A

0

have �nite perimeter (respetively

in 
 and �
). By standard regularity results for sets with minimal perimeter in dimension 3 and

2 (see for instane [Ta℄, [Amb2℄), the essential boundary of A in 
, that is, the interfae S

AB

, is
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a losed analyti surfae with onstant mean urvature, while the essential boundary of A

0

in �
,

that is L

A

0

B

0

, is a losed urve of lass C

1;1

.

For the rest of this setion we assume that all the objets we onsider are suÆiently smooth,

and all statements are given without rigorous proofs. Let us reall the geometrial parameters of

the problem. Given a on�guration (A;A

0

), the ontat line L



is the urve determined by the

intersetion of the interfae S

AB

= �A with the boundary of 
, the ontat angle � is de�ned at

every point of L



as the angle between the outward normal �




to �
 and the outward normal

to S

AB

(viewed as a part of the boundary of A); the dividing line L

A

0

B

0

is the boundary of A

0

,

and at every point x 2 L

A

0

B

0

we denote by K

g

(x) the salar produt of the outward o-normal

versor of �A

0

(denoted �

A

0

) by the mean urvature vetor of L

A

0

B

0

; in other words the real number

K

g

(x) represents the signed geodesi urvature of L

A

0

B

0

, oriented by the tangent vetor t so that

the Darboux system (t; �

A

0

; �




) is diret.

 θ
dividing line  L A'B'

contact line  L c

 phase A

boundary phase A'
boundary phase B'

 phase A  phase B

Figure 7: an example of equilibrium on�guration

We de�ne now the angles �

1

; �

2

2 [0; �℄, the dimensionless parameter � and the harateristi

length ` as follows:

os(�

1

) :=

�

AA

0

� �

BA

0

�

AB

; os(�

2

) :=

�

AB

0

� �

BB

0

�

AB

;

� :=

�

BB

0

+ �

AB

0

� �

AA

0

� �

BA

0

�

AB

; ` :=



�

AB

:

(5:2)

In the following we assume that �

1

� �

2

, the other ase being similar.

Let (A;A

0

) be an equilibrium on�guration for �

gen

, that is, a solution of (5:1). Then the mean

urvature of the interfae S

AB

is onstant, moreover we an derive some equilibrium onditions for

K

g

and �. More preisely, the ontat angle � veri�es

� =

�

�

1

on (L



nL

A

0

B

0

) \ A

0

,

�

2

on (L



nL

A

0

B

0

) \ B

0

,

� 2 [�

2

; �

1

℄ on L



\L

A

0

B

0

,

(5:3)

while the geodesi urvature K

g

veri�es

�2`K

g

=

(

� � os �

1

+ os �

2

on (L

A

0

B

0

nL



) \S

AW

,

� + os �

1

� os �

2

on (L

A

0

B

0

nL



) \S

BW

,

� � os �

1

� os �

2

+ 2 os � on L

A

0

B

0

\L



(5:4)

(we do not preise here in whih weak sense the urvature must be intended; learly (5:3) and (5:4)

will hold in the lassial sense up to few exeptional points).

Both equilibrium onditions (5:3) and (5:4) an be easily interpreted in term of fores. Notie

that the �rst two lines in (5:3) are a restatement of Young's law (f. (1:3) and (5:2)), while the �rst
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two lines in (5:4) are the usual onstant mean urvature ondition for the minimizers of funtionals

of the type aj�Ej+ bjEj E � �
 with E � �
, that is a Young's law on the manifold �
. In the

interesetion of L



and L

A

0

B

0

, the balane between fores due to surfae tension, line tension and

boundary adhesion leads to the relation between � and K

g

stated in the last line of (5:4).

We remark that the dividing line L

A

0

B

0

may be empty, namely when A

0

(resp. B

0

) is empty; in

this ase ondition (5:4) disappears and eventually (5:3) redues to the usual Young's law � = �

2

(resp. � = �

1

) on L



.

Both (5:3) and (5:4) depends only on the four independent parameters �

1

, �

2

, � and ` whih

determine the equilibrium on�gurations of �

gen

. This is in aordane with subsetion 2.4, where

we laimed that the model assoiated with �

gen

has indeed four degrees of freedom.

5.2. An example: a bubble growing in a ylinder

In this subsetion we give some expliit examples of equilibrium on�gurations. We restrit

our attention to the partiular ase

�

AA

0

= �

BB

0

= 0 ; �

AB

0

= �

BA

0

= �

AB

= � : (5:5)

Then �

1

= �, �

2

= 0, � = 0, and the only free parameter left is ` := =� (f. (5:2)). The expression

of �

gen

beomes

�

gen

(A;A

0

) = �

�

jS

AB

j+ jS

AB

0

j+ jS

BA

0

j+ `jL

A

0

B

0

j

�

: (5:6)

Notie that (5:5) implies (2:22), and therefore �

gen

is a partiular ase of �

0

(orresponding

to the relaxation of F

0

when �

AW

= �

BW

= 0) or of � (when the wells of V and W satisfy

� = �

0

< � = �

0

).

We onsider now the (limit) ase where the ontainer 
 is an in�nite ylinder of radius r and

the volume of the phase A is a �nite number v, and we study the behaviour of the equilibrium

on�gurations as v inreases from 0 to +1. Under the additional assumption that r � `=2, we

obtain in fat a omplete desription of the equilibrium on�gurations for every value of v.

Proposition 5.1. Assume that r � `=2 and let v

1

:= 4�r

3

=3 and v

2

:= �r

2

(r=3 + 2`) (hene

v

1

� v

2

). Then the equilibrium on�gurations (A;A

0

) are given as follows:

(i) when v � v

1

, A is any sphere with radius � :=

�

3v

4�

�

1=3

, A

0

is empty, and the total energy is

given by

E := 4��

2

� = (36�)

1=3

� v

2=3

; (5:7)

(ii) when v

1

< v < v

2

, A is the union of two half-spheres of radius r and a ylinder of radius r

and heigth d (see �gure 8 below) where d :=

v�v

1

�r

2

, A

0

is empty, and the total energy is

E := �(4�r

2

+ 2�rd) = �

�

4�r

2

3

+

2v

r

�

; (5:8)

(iii) when v � v

2

, A is a ylinder of radius r and heigth �

�1

r

�2

v and A

0

agrees with the interfae

S

AW

(see �gure 9 below); the total energy is

E := �(2�r

2

+ 4�r`) : (5:9)
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 phase B

 boundary phase B'

 contact line L c

 no boundary phase A'

 no dividing line L A'B'

r
 phase B

 phase A

d

Figure 8: equilibrium on�guration for v

1

< v < v

2

.

 phase B

 boundary phase B'

 contact line L   = dividing line Lc A'B'

 boundary phase B' boundary phase A'

 phase B phase A

Figure 9: equilibrium on�guration for v

2

� v.

The result of Proposition 5.1 an be interpreted as follows: for v smaller than the ritial

volume v

2

, the minimal energy is ahieved when A

0

is empty; this means that the dividing line

L

A

0

B

0

is empty no line tension appears. When v is smaller than v

1

, A is a spherial bubble whih

touhes the wall of the ontainer in at most one point (and the ontat line is empty); when v

reahes the value v

1

the sphere A beomes tangent to the ylinder (on a irle) and then it grows as

shown in �gure 8. In the intermediate range v

1

< v < v

2

, the ontat line L



onsists of two irles

(delimiting the part of the wall orresponding to S

AW

) and the ontat angle � is everywhere equal

to �

2

= 0. When v passes the ritial value v

0

we have a sudden hange: the boundary phase

A

0

appears and agrees with the interfae S

AW

; the ontat line L



and the dividing line L

A

0

B

0

oinide and have vanishing geodesi urvature K

g

(x). Then (5:4) shows that the ontat angle �

is equal to

�

2

.

In other words, if we onsider the quasistati evolution of the system when the volume v

of phase A inreases ontinuously from 0 to +1, the bubble will experiene a disontinuity in �

(from � = 0 to � =

�

2

) when v reahes the itial value v

2

. This example shows that for a good

understanding of this model of apillarity with line tension it is ruial to admit boundary phases

whih may not agree with the interfaes between the bulk phases and the wall.

Remark 5.2. In the previous example we have assumed ondition (5:5) only to provide expliit

omputations. Another interesting situation is obtained when the ontainer 
 is an a half-spae

and the oeÆients of �

gen

satisfy, instead of (5:5),

�

AA

0

= �

BB

0

= 0 ; 0 < �

AB

0

= �

BA

0

= �

0

< �

AB

= � :

In this ase the angle �

2

lies in interval (0;

�

2

), �

1

= � � �

2

, and � = 0 (see (5:2)).

Under these assumptions we expet the following piture (whih has been partially on�rmed

by numerial omputations): when the volume v of the phase A is small, the optimal on�guration

is obtainbed when A

0

is empty and the interfae S

AB

is a spherial surfae whih meets the wall
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�
 with onstant ontat angle � = �

2

; in this regime A grows homotetially with v, the dividing

line is empty and there is no line tension.

When v is larger than a ertain ritial value v

0

, the optimal on�guration is obtained when

A

0

agrees with S

AW

and S

AB

is a spherial surfae whih meets �
 with onstant ontat angle

� 2 (�

2

;

�

2

). When v passes v

0

the ontat angle � inrease disontinuosly from �

2

to a ertain

�

0

2 (�

2

;

�

2

); also the radius of the disk S

AB

admits a disontinuity at v = v

0

. In the regime v > v

0

the dividing line agrees with the ontat line, the radius of the disk S

AB

inreases with v, while the

relative ontribution of line tension to the total energy dereases, and the ontat angle inreases

to �=2 as v !1.

Sketh of the proof of Proposition 5.1.

Sine L

A

0

B

0

= �A

0

, S

AB

= �A \ 
, S

AB

0

= �A n A

0

, S

BA

0

= A

0

n �A, and ` = =�, we an

rewrite the funtional �

gen

in (5:6) as

�

gen

(A;A

0

) = �

�

j�A4A

0

j+ `j�A

0

j

�

: (5:10)

We onsider now a minimizer (A;A

0

) of �

gen

under the onstraint jAj = v.

Step 1: if A

0

is empty, then A is a sphere as long as v � v

1

= 4�r

3

=3, and otherwise is given as

in �gure 8; the orresponding energies are given by (5:7) and (5:8) respetively.

If A

0

is empty then A minimizes �j�Aj under the volume onstraint jAj = v (f. (5:10)). Then

A must be a sphere as long as a sphere of volume v is ontained in 
, that is, for v � 4�r

3

=3.

For larger v, we an easily prove that A is axially symmetri (by a standard appliation of Steiner

symmetrization), �A has onstant mean urvature in 
 and meets �
 with onstant ontat angle

� = 0 (f. (5:3)). The only possibility is the one in �gure 8.

Step 2: if A

0

is not empty, then j�A

0

j � 4�r.

We assume �rst that �A

0

onsists of one onneted omponent  only. Sine the losed urve

 is a boundary within �
, it is homotopially trivial. Now the Gaussian urvature of �
 vanishes

and by the theorem of Gauss-Bonnet, the integral over  of the modulus of the geodesi urvature

K

g

(x) is exatly 2�. But we know from (5:4) that jK

g

(x)j � 1=` (reall that � = 0). Then  has

length at least 2�`, and the thesis follows by the assumption r � `=2.

Clearly this argument runs also if we assume that �A

0

ontains at least one homotopially

trivial onneted omponent. In all other ases, �A

0

ontains at least two losed urves whih wind

around the ylinder and therefore we have again j�A

0

j � 4�r.

Step 3: if A

0

is not empty then v > �

2

r

3

.

By Step 2 we know that j�A

0

j � 4�r, and then the energy of the on�guration (A;A

0

) is at

least 4�r`�, whih is stritly larger than (5:7) and (5:8) if v � �

2

r

3

; by Step 1 we dedue that

(A;A

0

) annot be a minimizer for v � �

2

r

3

.

Step 4: if A

0

is not empty then A is given as in �gure 9, and the energy is given in (5:9).

By Step 2 we know that j�A

0

j � 4�r and by Step 3 that jAj > �

2

r

3

. Then Proposition 6.10

yields j�A \ 
j � 2�r

2

and therefore the total energy is larger than �(2�r

2

+ 4�r`). On the other

hand this lower bound is ahieved by the on�guration desribed in �gure 9 only.

To onlude the proof, it is enough to notie that the on�guration in �gure 9 is preferable to

the one in �gure 8 only when v is larger than v

2

= �r

2

(r=3 + 2`) (just ompare the values of the

energy in (5:8) and (5:9)).

6. Appendix
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We give here some tehnial lemmas we used in the previous setions.

6.1. A rearrengement result

Let  be a positive dereasing funtion on [0;+1[. For every ouple of Borel sets A and B in

R we set

	(A;B) :=

Z

A�B

 (jx

0

� xj) dx

0

dx : (6:1)

Now, for every t; y 2 R, we denote by L

t

(A) the interval [t; t + jAj℄ and by R

y

(B) the interval

[y� jBj; y℄. The following result an be found in [ABS1℄ (see also [Br℄); for the onveniene of the

reader we give also the proof.

Proposition 6.1. If A and B are disjoint sets inluded in the interval [t; y℄, then

	(A;B) � 	

�

L

t

(A); R

y

(B)

�

: (6:2)

In other words, if we �x an interval I and restrit our attention to the lass of all A;B � I

with presribed measures a and b (with a + b � jI j), then the in�mum of 	 is ahieved when A

and B are intervals and are taken as muh distant as possible.

Proof. We write A � B if supA � inf B. We remark that if t � A � B � y then

	(A;B) � 	(L

t

(A); B) and 	(A;B) � 	(A;R

y

(B)) : (6:3)

Indeed, by setting h(x) := t +

R

x

t

1

A

(s) ds, we have that h(x) � x for all x � t, and sine  is

dereasing we get

	(A;B) =

Z

B

h

Z

+1

t

 (x

0

� x) 1

A

(x) dx

i

dx

0

�

Z

B

h

Z

+1

t

 (x

0

� h(x))h

0

(x) dx

i

dx

0

=

Z

B

h

Z

t+a

t

 (x

0

� u) du

i

dx

0

= 	(L

t

(A); B) :

This proves the �rst inequality in (6:3). The seond one may be proved in the same way.

Next we observe that it suÆes to prove inequality (6:2) when A and B are �nite unions of

losed intervals, the general ase will follow by a standard approximation argument. Let A =

A

1

[A

2

[ : : :[A

n

A

, B = B

1

[B

2

[ : : :[B

n

B

, where A

i

and B

j

are pairwise disjoint losed intervals

in [t; y℄.

The proof is ahieved by indution on the total number of intervals n = n

A

+ n

B

. When

n = 1, either A or B is empty and the proposition is trivial. Now, we assume the proposition true

for n and we prove it for n+ 1.

Let be given A and B suh that n

A

+ n

B

= n + 1. With no loss in generality we may

assume that A is non-empty and A

1

� A

i

for all i > 1 and A

1

� B; we set  := jA

1

j and

A

0

:= A

2

[ A

3

[ : : : [ A

n

A

. Then we may write 	(A;B) as 	(A

1

; B) + 	(A

0

; B), and sine

t � A

1

� B � y, inequalities (6:3) yield

	(A

1

; B) � 	

�

L

t

(A

1

); B

�

� 	

�

L

t

(A

1

); R

y

(B)

�

:

Moreover, A

0

and B are disjoint subsets of [t + ; y℄ and n

A

0

+ n

B

= n; therefore the indutive

hypothesis yields

	(A

0

; B) � 	

�

L

t+

(A

0

); R

y

(B)

�

:
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Hene

	(A;B) � 	

�

L

t

(A

1

); R

y

(B)

�

+	

�

L

t+

(A

0

); R

y

(B)

�

and sine L

t

(A

1

) [ L

t+

(A

0

) = L

t

(A), we dedue (6:2).

6.2. Optimal onstants for some trae inequalities

The following three statements are onerned with the optimal onstant for some trae in-

equalities involving the L

2

norm of the gradient of a funtion de�ned on a two-dimensional domain

and the H

1=2

norm of its trae on a line. For the time being u = u(x; y) is a real funtion on

R

2

, v = v(x) is the trae of u on the line R � f0g, û = û(�; �) is the Fourier Transform of u and

v̂ = v̂(�) is the Fourier Transform of v.

Lemma 6.2. Let u be a funtion in L

1

lo

(R

2

) with derivative in L

2

. Then u belongs to H

1

lo

(R

2

)

and the trae of u on the line R � f0g is a well-de�ned funtion v 2 L

2

lo

(R). Moreover

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx � �

Z

R

2

jDuj

2

dx dy : (6:4)

Proof. First we prove inequality (6:4) when u is a smooth funtion with ompat support by a

standard Fourier Transform argument (f. [Ne℄, hapter 2, setion 5):

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx =

Z

R

h

Z

R

jv(x+ h)� v(x)j

2

dx

i

dh

h

2

=

Z

R

h

Z

R

�

�

v̂(�)(e

2�ih�

� 1)

�

�

2

d�

i

dh

h

2

=

Z

R

h

Z

R

2� 2 os(2�h�)

h

2

dh

i

jv̂(�)j

2

d�

= 4�

2

Z

R

jv̂(�)j

2

j�j d�

(here the seond equality follows from Planherel Theorem and the identity d�

h

v(�) = e

2�ih�

v̂(�),

while the last equality follows from the identity

R

R

(2� 2 os(2�h�))h

�2

dh = 4�

2

j�j).

Now we notie that v̂(�) =

R

R

û(�; �) d�, and then

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx = 4�

2

Z

R

h

Z

R

û(�; �)j�j

1=2

d�

i

2

d�

= 4�

2

Z

R

h

Z

R

�

û(�; �)(�

2

+ �

2

)

1=2

��

j�j

�

2

+ �

2

�

1=2

d�

i

2

d�

� 4�

2

Z

R

h

Z

R

jûj

2

(�

2

+ �

2

) d�

ih

Z

R

j�j

�

2

+ �

2

d�

i

d�

= 4�

3

Z

R

2

jûj

2

(�

2

+ �

2

) d� d�

= �

Z

R

2

jDuj

2

dx dy

(the inequality follows from Shwartz-H�older inequality, while the last equality follows from

Planherel theorem and the identity



Du(�; �) = 2�i û(�; �) � (�; �)).

Now we want to extend inequality (6:4) to all funtions in the Beppo-Levi spae X :=

�

u 2

L

1

lo

(R

2

) : Du 2 L

2

	

. We reall that X is Fr�ehet spae whose topology is generated by the L

1

lo

topology and the semi-norm kDuk

2

. We will use a density argument.
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Notie that the right hand side of inequality (6:4) is ontinuous on X (by the de�nition of

the topology of X), while the left hand side is lower semiontinuous in L

1

lo

, and then also in X ,

by the Fatou's Lemma. Hene it is enough to prove that the spae D(R

2

) of all smooth funtions

with ompat support is dense in X . Sine D(R

2

) is dense in H

1

(R

2

) and X \ L

1

is dense in X

(any u 2 X may be approximated by the trunated funtions u

n

:= (u ^ n) _ (�n)), it remains to

show that H

1

is dense in X \ L

1

(with respet to the X topology).

For every bounded funtion u in X and every integer n > 1 we set u

n

(x) := g

n

(x)u(x) where

g

n

(x) =

8

<

:

1 if jxj � n

1=e

,

log(logn)� log(log jxj) if n

1=e

� jxj � n,

0 if n � jxj.

Eah u

n

belongs to H

1

and u

n

tends to u in L

1

lo

. Moreover Du

n

= g

n

Du+uDg

n

, and uDg

n

! 0

in L

2

beause u is bounded and Dg

n

! 0 in L

2

(this an be heked by a diret omputation);

hene Du

n

! Du in L

2

, and thus we have proved that u

n

tends to u in X .

Corollary 6.3. Let A be the half-plane f(x; y) : y > 0g and let u be a funtion in L

1

lo

(A) suh

that Du 2 L

2

. Then the trae v of u on R � f0g is well-de�ned and

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx � 2�

Z

A

jDuj

2

dx dy : (6:5)

Proof. Extend the funtion u to the whole R

2

by reetion and then apply Lemma 6.2.

Corollary 6.4. Let D be the half-disk

�

(x; y) : x

2

+ y

2

< r; y > 0

	

where r > 0, and let u be

a funtion in H

1

(
). Then the trae of u on the segment E � f0g (with E =℄ � r; r[) belongs to

H

1=2

(E) and

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx dx

0

� 2�

Z

D

jDuj

2

dx dy : (6:6)

Proof. We extend the funtion u to the whole half-plane A := f(x; y) : y > 0g by setting

~u(z) =

�

u(z) if jzj < r,

u(r

2

=�z) if jzj > r

(we identify the points (x; y) with the omplex numbers z = x+ iy). Sine z 7! r

2

=�z is a onformal

mapping, we have

R

AnD

jD~uj

2

=

R

D

jD~uj

2

=

R

D

jDuj

2

. ThusD~u belongs to L

2

(A) and by Corollary

6.3 we get

4�

Z

D

jDuj

2

= 2�

Z

A

jD~uj

2

�

Z

R

2

�

�

�

~v(x

0

)� ~v(x)

x

0

� x

�

�

�

2

dx

0

dx

�

Z

E

2

�

�

�

~v(x

0

)� ~v(x)

x

0

� x

�

�

�

2

dx

0

dx+

Z

(RnE)

2

�

�

�

~v(x

0

)� ~v(x)

x

0

� x

�

�

�

2

dx

0

dx

=

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx+

Z

E

2

�

�

�

v(x

0

)� v(x)

r=x

0

� r=x

�

�

�

2

r

4

(x

0

x)

2

dx

0

dx

= 2

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx :

Remark 6.5. The onstants in the trae inequalities (6:4), (6:5) and (6:6) are optimal. The proof

of this laim learly redues to prove that the onstant 2� in (6:6) is sharp. To this end we onsider

for every � > 1=r the funtions u

�

: D ! [0; 1℄ given in polar oordinates � 2℄0; �[, � 2℄0; r[ by

u

�

(�; �) :=

8

<

:

�

�

�� for 0 < � < 1=�,

1

�

� for 1=� < � < r.

(6:7)
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The trae of u

�

on E is the funtion v

�

(x) = 0 for x > 0 and v

�

(x) = 1 for x < 0. By a

straightforward omputation one gets

Z

E

2

�

�

�

v

�

(x

0

)� v

�

(x)

x

0

� x

�

�

�

2

dx dx

0

= 2 log�+O(1)

and

Z

D

jDu

�

j

2

dx dy =

1

�

log�+O(1) :

The onlusion follows by letting �! +1.

6.3. Some sliing results

We establish now a onnetion between the ompatness of a family of funtions in L

1

(R

h

) and

the ompatness of the traes of these funtions on lines. We �x L > 0 and we assume throughout

this subsetion that every funtion takes values in the interval [�L;L℄.

Let us �x some notation: A is a bounded open subset of R

N

, e is a unit vetor in R

N

and

u a funtion on A; we denote by M the orthogonal omplement of e, by A

e

the projetion of A

onto M ; for every y 2 M , A

y

e

:= ft 2 R : y + te 2 Ag and u

y

e

is the trae of u on A

y

e

, that is,

u

y

e

(t) := u(y + te). Aordingly, for every family F of funtions on A we set F

y

e

:= fu

y

e

: u 2 Fg,

so that F

y

e

is a familiy of funtions on A

y

e

.

The simplest statement whih onnets the pre-ompatness of F in L

1

(A) with the pre-

ompatness of F

y

e

in L

1

(A

y

e

) is the following: assume that there exist N linearly independent unit

vetors e suh that:

F

y

e

is pre-ompat in L

1

(A

y

e

) for H

N�1

a.e. y 2 A

e

. (6:8)

Then F is pre-ompat in L

1

(A).

Unfortunately this statement does not �t our purposes. A suÆiently general result is obtained

by allowing the possibility of replaing F in (6:8) with a perturbation of F . More preisely, for

every Æ > 0 we say that a family F

0

is Æ-dense in F if F lies in a Æ-neighborhoud of F

0

with respet

to the L

1

(A) topology, and then we have the following:

Theorem 6.6. Let F be a family of funtions v : A ! [�L;L℄ and assume that there exists N

linearly independent unit vetors e whih satisfy the following property:

for every Æ > 0 there exists a family F

Æ

Æ-dense in F suh that

(F

Æ

)

y

e

is pre-ompat in L

1

(A

y

e

) for H

N�1

a.e. y 2 A

e

.

(6:9)

Then F is pre-ompat in L

1

(A).

Proof. With no loss in generality, we may assume that L = 1 and jA

y

e

j � 1 for all y. Every funtion

de�ned on A is extended to 0 on R

N

nA, and aordingly every funtion de�ned on A

y

e

is extended

to 0 on R n A

y

e

. Fix for the moment a unit vetor e whih satis�es (6:9). For all y 2 A

e

and all

s > 0 we set

!

y

Æ

(s) := sup

n

Z

R

�

�

v

y

e

(t+ h)� v

y

e

(t)

�

�

dt : v 2 F

Æ

; h 2 [�s; s℄

o

: (6:10)

Sine jv

y

e

j � 1 and jA

y

e

j � 1, then !

y

Æ

(s) � 2 for all s > 0, and sine (F

Æ

)

y

e

is pre-ompat in L

1

(A

y

e

),

the Fr�ehet-Kolmogorov Theorem yields that !

y

Æ

(s) # 0 as s # 0. Take now u 2 F and Æ > 0, and

hoose v 2 F

Æ

suh that ku� vk

1

� Æ (in L

1

(A)). By (6:10) we obtain, for every h

Z

R

N

�

�

u(x+ he)� u(x)

�

�

dx � 2Æ +

Z

R

N

�

�

v(x + he)� v(x)

�

�

dx

= 2Æ +

Z

A

e

�

Z

R

�

�

v

y

e

(t+ h)� v

y

e

(t)

�

�

dt

�

dy

� 2Æ +

Z

A

e

!

y

Æ

(jhj) dy : (6:11)
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For every Æ > 0 and s > 0 we set !

Æ

(s) :=

R

A

e

!

y

Æ

(s) dy. Then !

Æ

� 2jA

e

j beause !

y

Æ

� 2,

and !

Æ

(s) # 0 as s # 0 beause the same holds true for all !

y

Æ

(apply the dominated onvergene

theorem). Now, for all s > 0 we set !(s) := inf

Æ>0

�

2Æ + !

Æ

(s)

�

: the funtion ! is bounded and

!(s) # 0 as s # 0, and (6:11) yields

Z

R

h

�

�

u(x+ he)� u(x)

�

�

dx � !(jhj) 8h 2 R; v 2 F : (6:12)

Finally we take linearly independent unit vetors e

i

with i = 1; : : : ; N whih satisfy (6:9) and

we take !

i

suh that (6:12) holds (with e and ! replaed by e

i

and !

i

resp.). Sine the vetors e

i

span R

N

, the Fr�ehet-Kolmogorov Theorem implies that F is pre-ompat in L

1

(A).

We onlude this subsetion by realling some results about the sliing of Sobolev funtions

and �nite perimeter sets, whih are well-known to experts but not available in this form in standard

referene books. For simpliity we onsider only one-dimensional sliings, but the following results

are valid for sliings with arbitrary dimension.

Remark 6.7. Let A, e, A

e

and A

y

e

be given as before, and take a Borel funtion u on A; by Fubini's

theorem u belongs to L

p

(A) (with 1 � p <1) if and only if u

y

e

belongs to L

p

(A

y

e

) for a.e. y 2 A

e

and the funtion y 7! ku

y

e

k

p

belongs to L

p

(A

e

).

Similarly, given a sequene (u

n

) � L

p

(A) whih onverges to u in L

p

(A), possibly passing

to a subsequene we have that (u

n

)

y

e

onverges to u

y

e

in L

p

(A

y

e

) for a.e. y 2 A

e

. Conversely, if

(u

n

)

y

e

! u

y

e

in L

p

(A

y

e

) for a.e. y 2 A

e

and the funtions ju

n

j

p

are equi-integrable, then u

n

! u in

L

p

(A).

Proposition 6.8. (f. [EG℄, setion 4.9)

Let be given u 2 L

p

(A). If e is an arbitrary unit vetor and u belongs to W

1;p

(A), then

u

y

e

2 W

1;p

(A

y

e

) for a.e. y 2 A

e

, and the derivative Du

y

e

(t) agrees with the partial derivative

D

e

u(y+ te) for a.e. y 2 A

e

and t 2 A

y

e

. Conversely u belongs to W

1;p

(A) if there exist N linearly

independent unit vetors e suh that u

y

e

2W

1;p

(A

y

e

) for a.e. y 2 A

e

and the funtion y 7! kDu

y

e

k

p

belongs to L

p

(A

e

).

Proposition 6.9. (see [Amb1℄, f. also [EG℄, setion 5.10)

Let be given a Borel set E � A. If e is an arbitrary unit vetor and E has �nite perimeter in

A, then E

y

e

has �nite perimeter in A

y

e

and �(E

y

e

\ A

y

e

) = (�E \ A)

y

e

for a.e. y 2 A

e

, and

Z

A

e

#(�E

y

e

\ A

y

e

) dy =

Z

�E\A

h�

E

; ei : (6:13)

Conversely, E has �nite perimeter in A if there exist N linearly independent unit vetors e suh

that the integral of #(�E

y

e

\ A

y

e

) over all y 2 A

e

is �nite.

6.4. An inequality of isoperimetri type

In this last subsetion we onsider �nite perimeter sets A in R

3

, as usual �A denotes the

essential boundary of A. The result we are interested in reads as follows:

Proposition 6.10. Let be given an in�nite ylinder 
 with radius r in R

3

, and a �nite perimeter

set A � 
 with volume jAj � �

2

r

3

. Then j�A \ 
j � 2�r

2

.

Proof. Let denote points in R

3

by (x; t) 2 R

2

� R, and let P be the projetion on R

2

, that is,

P (x; t) := x. We assume 
 is of the form D � R where D is the disk with enter 0 and radius

r in R

2

, and that every point of A is a point of density one. For all t 2 R we denote by A

t

the
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set of all x suh that (x; t) 2 A, and by Æ the measure of D n P (A). We apply to eah set A

t

the

isoperimetri inequality on the disk D:

min

�

jA

t

j; � r

2

� jA

t

j

	

� C j�A

t

\Dj

2

; (6:14)

where C := �=8.

By the de�nition of Æ we obtain �r

2

�jA

t

j � Æ, and if we apply the inequality minfa; bg � a

2

b

(valid for 0 � a; b � 1) with a := jA

t

j

Æ

�r

2

and b := Æ

Æ

�r

2

, we get min

�

jA

t

j; �r

2

� jA

t

j

	

�

Æ

�

jA

t

j=�r

2

�

2

. Then (6:14) yields j�A

t

\ Dj �

p

Æ=C

�

jA

t

j=�r

2

�

, and integrating this inequality

over all t leads to

Z

R

j�A

t

\Dj dt �

p

Æ=C

�r

2

jAj : (6:15)

We reall now that for every two-dimensional reti�able set S � R

3

there holds

�

H

2

(S)

�

2

�

h

Z

D

#

�

S \ fxg � R

�

dx

i

2

+

h

Z

R

H

1

(S

t

) dt

i

2

(this inequality an be easily derived for surfaes of lass C

1

, and therefore immediately extended

to any reti�able set). Now we apply this inequality to S = �A\
, and sine (�A\
)

t

= �A

t

\D

for a.e. t 2 R and #

�

�A \ fxg � R

�

� 2 for a.e. x in P (A) (f. Proposition 6.9), by (6:15) we get

j�A \ 
j

2

� 4(�r

2

� Æ)

2

+

ÆjAj

2

C�

2

r

4

� (2�r

2

)

2

+

�

jAj

2

C�

2

r

4

� 8�r

2

�

Æ + 4Æ

2

:

Finally, inequality j�A \ 
j � 2�r

2

follows when jAj �

p

8C�

3

r

6

= �

2

r

3

.
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