
Phase Transition with Line Tension E�e
t

(Revised Version, September 1997)

G. Alberti*,G. Bou
hitt�e**, P. Seppe
her**

Abstra
t: We make the 
onne
tion between the geometri
 model for 
apillarity with line tension

and the Cahn-Hilliard model of two-phase 
uids. To this aim we 
onsider the energies

F

"

(u) := "

Z




jDuj

2

+

1

"

Z




W (u) + �

Z

�


V (u)

where u is a s
alar density fun
tion and W and V are double-well potentials. We show that the

behaviour of F

"

in the limit " ! 0 and � ! 1 depends on the limit of " log�. If this limit is

�nite and stri
tly positive, then the singular limit of the energies F

"

lead to a 
oupled problem of

bulk and surfa
e phase transitions, and under 
ertain assumptions agrees with the relaxation of

the 
apillary energy with line tension. These results were announ
ed in [ABS1℄ and [ABS2℄.
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1. Introdu
tion

In the 
lassi
al model for two-phase 
uids, it is given a 
uid in a 
ontainer 
 � R

3

, and it is

assumed that every 
on�guration of the system is des
ribed by the mass density u whi
h takes only

two values � and �, 
orresponding to the phases A := fu = �g and B := fu = �g = 
 n A. The

energy is lo
ated on the interfa
e S

AB

whi
h separates the two phases, with density �

AB

(surfa
e

tension), and on the the 
onta
t surfa
es S

AW

and S

BW

between the wall of the 
ontainer and

the phases A and B, with density �

AW

and �

BW

respe
tively. Then the equilibrium 
on�gurations

minimize, under some volume 
onstraint, the 
apillary energy

E

0

(A) := �

AB

jS

AB

j+ �

AW

jS

AW

j+ �

BW

jS

BW

j : (1:1)

Here and in the following jAj denote the measure of A, namely the area when A is a surfa
e, and

the length when A is a line. Surfa
e energy densities are represented by the letter � with an index
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whi
h re
all the type of interfa
e under 
onsideration; these 
oeÆ
ients are stri
tly positive, and


learly do not depend on the parti
ular 
on�guration of the system.

The minimum problem (1:1) is the so-
alled liquid-drop problem; the existen
e of a solution

for this minimum problem is assured by the wetting 
ondition

j�

AW

� �

BW

j � �

AB

: (1:2)

At equilibrium, the interfa
e S

AB

has 
onstant mean 
urvature, and it meets the wall of the


ontainer at a 
onstant 
onta
t angle �, whi
h satis�es Young's law (see for instan
e [RW℄ or [F℄)


os(�) =

�

AW

� �

BW

�

AB

: (1:3)

An interesting extension of the previous model is obtained by adding to E

0

an energy 
on-


entrated along the line L




where S

AB

meets the wall of the 
ontainer (
onta
t line) with density


; this energy density is referred to as line tension (see [RW℄, [WW℄). In this model the 
apillary

energy be
omes:

F

0

(A) := �

AB

jS

AB

j+ �

AW

jS

AW

j+ �

BW

jS

BW

j+ 
jL




j : (1:4)

An alternative way to study two-phase 
uids originates from the 
ontinuum me
hani
s ap-

proa
h initiated by Gibbs and revisited by Cahn and Hilliard in the 60's [CH℄. The interfa
e S

AB

is now repla
ed by a thin layer in whi
h the mass density u varies 
ontinuously from the value

� to the value �, and the energy asso
iated with u is the sum of a Gibbs free energy

R




W (u),

where W is a two-wells potential vanishing at � and �, and a term �

R




jDuj

2

whi
h penalizes the

non-homogeneity of the 
uid. Moreover a boundary 
ontribution

R

�


V (u) 
an be added to take

into a

ount the intera
tions between the 
uid and the wall of the 
ontainer.

The 
oeÆ
ient � introdu
es an intrinsi
 length whi
h is 
hara
teristi
 of the thi
kness of the

interfa
e, and sin
e this length is in general mu
h smaller than the size of the 
ontainer, it is natural

to study the equilibrium of su
h a 
uid in an asymptoti
 way, i.e., by 
onsidering the limits as

" tends to 0 of the minimizers u

"

(subje
t to some mass 
onstraint

R




u

"

= m) of the res
aled

energies

F

"

(u) := "

Z




jDuj

2

+

1

"

Z




W (u) + �

Z

�


V (u) ; (1:5)

where � represents the order of magnitude of the wall-
uid intera
tions.

This problem has been studied by several authors, mainly in the 
ase � = 0 (that is, when

no boundary energy is 
onsidered; see for instan
e [Gu℄, [Mo1℄, and [Ba℄ for multi-phase 
uids).

In the 
ase � = 1, L. Modi
a established in [Mo2℄ a rigorous 
onne
tion between the 
lassi
al

model for 
apillarity E

0

and the Cahn-Hilliard model: the sequen
e of minimizers u

"

(of F

"

) is

pre-
ompa
t in L

1

(
), ea
h limit point u takes only the values � and � (almost everywhere), and

the 
orresponding phase A := fu = �g solves the liquid-drop problem asso
iated with an energy

of type (1:1), where the 
oeÆ
ients �

AB

, �

AW

and �

BW


an be expressed in term of the potentials

W and V . We re
all that in [Mo2℄ it was assumed that W , V , � and 
 do not depend on " (whi
h

means that " is in�nitely smaller than any other parameter of the problem) while in the present

work we 
onsider a di�erent behaviour for �, namely that � tends to in�nity as " tends to zero.

Di�erent assumptions have already been dis
ussed in [BS℄ and [BDS℄.

The 
ontribution of this paper is twofold. First we fo
us on the model for 
apillarity with

line tension asso
iated with the energy F

0

. We show that due to a la
k of semi
ontinuity, this

fun
tional leads to ill-posed minimum problems. Then we apply the usual relaxation pro
edure

and we 
ompute the relaxed fun
tional F

0

expli
itely.

Our se
ond goal is to establish a rigorous 
onne
tion between F

0

and the Cahn-Hilliard model.

To this end we study the asymptoti
 behavior of the fun
tionals F

"

in the limit " ! 0 when �

2



tends to in�nity with a suitable s
aling and V is a two-well potential. We show that the limit of

F

"

in the sense of �-
onvergen
e is a fun
tional F (u) whi
h is �nite only if u takes values � or �.

Thus we 
an view F as a fun
tion of the phase A := fu = �g, and it turns out that F agrees with

F

0

for suitable 
hoi
e of the potentials W and V . Consequently, if u

"

minimizes F

"

subje
t to

the mass 
onstraint

R

"

u = m, and u is a limit point of the sequen
e (u

"

), then the 
orresponding

phase A := fu = �g minimizes F

0

subje
t to a suitable volume 
onstraint.

The relaxation pro
edure is des
ribed in subse
tion 2.2. We show that the total energy 
an

be properly written by introdu
ing, besides the usual bulk phase A � 
, an additional variable

A

0

� �
 whi
h is 
ompletely independent of A; A

0

and its 
omplement B

0

:= �
 n A

0

are 
alled

boundary phases. The total energy of the 
on�guration (A;A

0

) is then given by the sum of three

di�erent terms: the 
lassi
al surfa
e tension on the interfa
e between the bulk phases A and

B, a surfa
e density on the wall of the 
ontainer (whi
h depends on whi
h bulk phase and whi
h

boundary phase meet together) and a line density along the lineL

A

0

B

0

whi
h separates the boundary

phases A

0

and B

0

(dividing line).

Thus F

0

(A) is obtained by taking the minimum of �

0

(A;A

0

) over all possible A

0

(see Theorem

2.1). Noti
e that in general the boundary phase A

0

where su
h a minimum is attained di�ers from

the interfa
e S

AW

between A and the wall of the 
ontainer, and therefore F

0

is no longer of the

form (1:4). In parti
ular it is a nonlo
al fun
tional (while �

0

is lo
al), and what we 
alled \line

tension" is now lo
ated on the dividing line L

A

0

B

0

, whi
h in general does not agree with the 
onta
t

line L




; in this 
ase we speak of \disso
iation of 
onta
t line and dividing line".

In subse
tion 2.3 we show that a similar situation o

urs when we study the asymptoti


behaviour of F

"

. In order to properly write the limit of the boundary energies, as "! 0 we need to

introdu
e besides the usual bulk mass density u an additional variable v : �
! R 
alled boundary

mass density. A 
on�guration of the limit problem is represented by a 
ouple (u; v) to whi
h we

asso
iate a total energy �(u; v) (see Theorem 2.6). As before, we 
an re
over from � a fun
tional

whi
h depends only on the bulk density u: the limit F (u) of the fun
tionals F

"

(in the sense of

�-
onvergen
e) is given by the minimum of �(u; v) over all possible v (Corollary 2.7).

Sin
e � is �nite only when u takes values � and � and v takes values �

0

and �

0

(the wells of

the potential V ), we may regard � as a fun
tion of A := fu = �g and A

0

:= fv = �

0

g. In subse
tion

2.4 we en
ompass �

0

and � in a more general 
lass of fun
tionals. This leads to di�erent models

for 
apillarity with line tension, and then we need some qualitative 
omparison; indeed we show

that �

0


an be always obtained as � for a suitable 
hoi
e of the potentials V and W , while the


onverse is true only if V and W satisfy 
ertain restri
tions.

Se
tions 3 and 4 are devoted to the proofs of the mathemati
al results stated in se
tion 2.

The main mathemati
al diÆ
ulties arise in the proof of the �-
onvergen
e result for the fun
tional

F

"

. While the the limit energy 
an be evaluated in the bulk as in [Mo1℄, the 
hara
terization

of the boundary 
ontribution is more intri
ate. In parti
ular the two-dimensional part of the

boundary 
ontribution is studied by adapting the approa
h of [Mo2℄; for the one-dimensional part

we need several steps: �rst, by lo
alization and sli
ing arguments we redu
e to a problem on a

two-dimensional half-disk; then we repla
e the two-dimensional Diri
hlet energy on the half-disk

by the H

1=2

intrinsi
 norm on the diameter; eventually we are led to a new kind of singular

perturbation problem involving a nonlo
al term. This problem has its own interest (see Theorem

4.4 and [ABS1℄), and brings to the fore the right s
aling for �, namely log� ' 1=". Some te
hni
al

lemmas have been postponed in se
tion 6.

In se
tion 5, we des
ribe the me
hani
al 
onsequen
es of our model for line tension in term

of equilibrium 
on�gurations. We show that the disso
iation of 
onta
t line and dividing line may

o

ur also at equilibrium, and in that 
ase the 
onta
t angle no longer satis�es Young's law but

an entirely di�erent 
ondition. A

ordingly, in the quasistati
 evolution of su
h a 
uid the 
onta
t

angle may have dis
ontinuous 
hanges.
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2. Des
ription of the results

We begin by �xing the notation and re
alling some standard mathemati
al results used

throughout the paper. Then we dis
uss the relaxation of the fun
tional F

0

(subse
tion 2.2) and

the asymptoti
 behaviour of the fun
tionals F

"

(subse
tion 2.3). The 
omparison between these

results is brie
y dis
ussed in subse
tion 2.4.

2.1. Notation

In this paper we 
onsider di�erent domains A with dimension h = 1; 2; 3; more pre
isely, A

is always a bounded open set either of R

h

or of a smooth h-dimensional manifold M without

boundary, embedded in R

3

. We denote by �A the boundary of A relative to the ambient manifold;

�A is always assumed Lips
hitz regular.

We denote by B

r

(x) the ball with 
enter x and radius r; we write a _ b and a ^ b for the

maximum and the minimum of a and b respe
tively.

Unless di�erently stated A is always endowed with the 
orresponding h-dimensional Hausdor�

measure H

h

(
f. [EG℄, 
hapter 2). A

ordingly, we often write

R

A

f instead of

R

A

f dH

h

, and

jAj instead of H

h

(A), whereas we never omit an expli
it mention of the measure when it di�ers

from H

h

. We often use the fa
t that given a set B � R

k

and a Lips
hitz fun
tion f on B, then

H

h

(f(B)) � (Lip(f))

h

H

h

(B), where Lip(f) is the Lips
hitz 
onstant of f .

The h-dimensional density of E at a point x is the limit (if it exists) of the ratioH

h

(E\B

r

(x))

over !

h

r

h

as r ! 0, where !

h

is the measure of unit ball in R

h

. The essential boundary of E is the

set of all points where E has neither density 1 nor density 0, in
luding all points where the density

does not exist. Sin
e the essential boundary agrees with the topologi
al boundary when the latter

is Lips
hitz regular, we denote by �E also the essential boundary.

Troughout the rest of this paper, all the fun
tions and sets are assumed Borel measurable and

questions of measurability will never be dis
ussed.

Fun
tional spa
es

Let A be an h-dimensional domain and take u 2 L

1

lo


(A). The derivative of u in the sense of

distributions is denoted by Du. As usual H

1

(A) is the Sobolev spa
e of all real fun
tions u 2 L

2

(A)

su
h that Du belongs to L

2

(A), and BV (A) is the spa
e of all u 2 L

1

(A) with bounded variation,

that is, su
h that Du is a bounded Borel measure on A. Noti
e that when A is an open subset of

a manifold M � R

3

and u 2 H

1

(A), then Du : A ! R

3

and Du(x) belongs to the tangent spa
e

of M at x for a.e. x 2 A. If u 2 BV (A), then Du is a measure on A whi
h takes values in R

3

and

the density of Du with respe
t to its variation jDuj at x, belongs to the tangent spa
e of M at x

for jDuj-a.e. x 2 A. Re
all that every bounded set in BV (A) is relatively 
ompa
t in L

1

(A). The

letter T denotes the tra
e operator whi
h maps H

1

(A) onto H

1=2

(�A) and BV (A) onto L

1

(�A).

For further details and results about the theory of BV fun
tions and Sobolev spa
es we refer

the reader to [EG℄, 
hapters 4 and 5.

Jump set and essential boundary

Let A be an h-dimensional domain and take u 2 L

1

lo


(A). The jump set Su is the 
omplement

of the set of Lebesgue points of u, i.e., the set of points where the upper and lower approximate

limits of u di�er or are not �nite. If u 2 BV (A) then Su is re
ti�able: this means that it may

be 
overed by 
ountably many (h� 1)-dimensional submanifolds of 
lass C

1

ex
ept for an H

h�1

-

negligible subset. In parti
ular the dimension of Su does not ex
eed h � 1, and if u belongs to

H

1

(A) then Su is H

h�1

-negligible (see [EG℄, se
tions 4.8 and 5.9).

For every I � R, we de�ne BV (A; I) as the 
lass of all u 2 BV (A) su
h that u(x) 2 I

for a.e. x 2 A. If I := f�; �g, then a fun
tion u : A ! I belongs to BV (A) if and only if

H

h�1

(Su) < +1, and (� � �)H

h�1

(Su) agrees with the total variation kDuk of the derivative

4



Du (
f. [EG℄, se
tion 5.11). In the parti
ular 
ase I = f0; 1g, u is the 
hara
teristi
 fun
tion of a

set E and is denoted by 1

E

, and E is 
alled a set with �nite perimeter in A. Sin
e the essential

boundary of E agrees in A with the jump set of 1

E

, we dedu
e that E has a �nite perimeter in

A if and only if H

h�1

(�E \ A) is �nite. For this reason the notion of essential boundary �ts out

purposes more than the topologi
al boundary.

Every re
ti�able set S 
an be endowed with a (measure theoreti
) normal �eld � whi
h enjoys

the following property: for every hypersurfa
e M of 
lass C

1

and H

h�1

-almost every x in M \ S

the ve
tor �(x) agrees with a normal unit ve
tor to M at x. Moreover when S is the jump set

of a fun
tion u 2 BV (A; I) with I := f�; �g we 
an 
hose � so that the measure derivative Du

is given by the restri
tion of the measure H

h�1

to the set Su multiplied by the density fun
tion

(� � �) � �. This 
hoi
e of � is unique up to H

h�1

-negligible sets and is denoted by �

u

; when u is

the 
hara
teristi
 fun
tion of a �nite perimeter set E this normal �eld is also denoted by �

E

and

is 
alled the (approximate) inner normal to E.

Eventually we remark that when E has �nite perimeter in A the tra
e of the BV fun
tion 1

E

on �A (whi
h is de�ned as an element of L

1

(�A)) is the 
hara
teristi
 fun
tion of the set �E \�A.

In this sense, the set �E \ �A 
an be regarded as the tra
e of E on �A.

2.2. The relaxation theorem

The 
ontainer is represented by a bounded open set 
 of R

3

with a boundary of 
lass C

1

and the bulk phases are denoted A and B. Sin
e B = 
 n A, every 
on�guration is identi�ed by

A. In the following �A and �B denote the essential boundaries of A and B, and then the various

interfa
es involved in the expression of the energies E

0

or F

0

are de�ned as follows:

S

AB

:= �A \ �B is the surfa
e whi
h separates the phases A and B;

S

AW

:= �A \ �
 is the surfa
e whi
h separates A from the wall of the 
ontainer;

S

BW

:= �B \ �
 is the surfa
e whi
h separates B from the wall of the 
ontainer.

L




:= �S

AW

is the 
onta
t line, i.e., the line whi
h separates S

AW

from S

BW

.

In the following the letters S and L always denote a surfa
e and a line respe
tively, and

therefore we often denote the area H

2

(S ) and the length H

1

(L ) simply by jS j and jL j. The

letters in sans-serif A and B will be reserved for the phases.

The admissible 
on�gurations of the system belong to the spa
e X of all Borel subsets of 
.

We endow X with the distan
e d(A

1

;A

2

) := H

3

(A

1

4A

2

), where A

1

4A

2

:= (A

1

n A

2

) [ (A

2

n A

1

)

is the symmetri
 di�eren
e of A

1

and A

2

.

Our �rst 
laim is that the fun
tional F

0

de�ned in (1:4) is not lower semi
ontinuous on X .

The reason 
an be easily outlined: �x a 
on�guration A and 
ompare its energy with the energy of

a new 
on�guration A

Æ

whi
h is obtained by inserting a layer of phase B with thi
kness Æ between

A and the wall (see �gure 1).

A Aδ
δ

B Bδ
contact line L c

SAW
SBW

Figure 1: the 
on�gurations A and A

Æ

.

As Æ tends to zero, A

Æ


onverges to A in X , and sin
e A

Æ

does not tou
h the wall, the 
onta
t

line of the new 
on�guration is empty and the interfa
e between the two phases A

Æ

and B

Æ


onsists

5



roughly speaking in the union S

AB

[S

AW

. Hen
e

F

0

(A)� F

0

(A

Æ

) ' (�

AW

� �

AB

� �

BW

) jS

AW

j+ 
jL




j : (2:1)

Clearly the right hand side of (2:1) is stri
tly positive for a suitable 
hoi
e of A: indeed the area

jS

AW

j is bounded by j�
j while the length jL




j 
an be taken arbitrarily large. Hen
e for su
h a


on�guration there holds lim inf F

0

(A

Æ

) < F

0

(A).

Let us emphasize that this phenomenon is not related to the parti
ular 
hoi
e of the topology

on the spa
e of 
on�gurations X . Sin
e we are interested in minimizing F

0

, we 
an 
onsider only

topologies whi
h make F

0


oer
ive, that is, su
h that every sequen
e whi
h is bounded in energy is

pre-
ompa
t, and it 
an be easily 
he
ked that the 
hoi
e of any (separated) topology in this 
lass

has no in
iden
e on the lower semi
ontinuity of F

0

. Noti
e that due to the 
ompa
t embedding of

BV (
) in L

1

(
), the metri
 we imposed on X makes F

0


oer
ive.

This la
k of lower semi
ontinuity shows that looking for equilibrium 
on�gurations on the

basis of the model F

0

leads to ill-posed problems. In subse
tion 5.2 we show that the energy F

0

may admit no minimizer with pres
ribed volume.

The next natural step is to 
onsider the relaxation of F

0

, namely

F

0

(A) := inf

�

lim inf

n!1

F

0

(A

n

) : A

n

! A in X

	

: (2:2)

First we remark that given a sequen
e (A

n

) whi
h tends to A in X , the tra
e of A

n

on �
 (i.e.,

S

A

n

W

) 
onverges in X

0

to a set A

0

whi
h in general does not agree with the tra
e of A. This is

indeed the 
ase for the sequen
e (A

Æ

) de�ned above (see �gure 1). This 
onsideration suggests that

to des
ribe the relaxation of F

0

it is 
onvenient to introdu
e, besides the usual \bulk" phases A

and B, two additional \boundary" phases A

0

and B

0

.

Spe
i�
ally, for every A � 
 and A

0

� �
 we set

B

0

:= �
 n A

0

; L

A

0

B

0

:= �A

0

;

S

AA

0

:= S

AW

\ A

0

= �A \ A

0

; S

AB

0

:= S

AW

\ B

0

= �A \ B

0

;

S

BA

0

:= S

BW

\ A

0

= �B \ A

0

; S

BB

0

:= S

BW

\ B

0

= �B \ B

0

:

(2:3)

The line L

A

0

B

0

whi
h separates the phases A

0

and B

0

will be 
alled the dividing line.

We asso
iate with ea
h 
on�guration (A;A

0

) the energy

�

0

(A;A

0

) := �

AB

jS

AB

j+ �

AW

jS

AA

0

j+ (�

AB

+ �

BW

) jS

AB

0

j+

+ �

BW

jS

BB

0

j+ (�

AB

+ �

BW

) jS

BA

0

j+ 
jL

A

0

B

0

j :

(2:4)

Therefore F

0


an be written in terms of �

0

by

F

0

(A) = �

0

(A;S

AW

) : (2:5)

The spa
e of all admissible 
on�gurations is now X � X

0

, where X is de�ned above and X

0

is

the spa
e of all Borel subsets of �
, endowed with the distan
e d

0

(A

0

1

;A

0

2

) := jA

0

1

4A

0

2

j. Sin
e all


oeÆ
ients in (2:4) are stri
tly positive we dedu
e immediately that the fun
tional �

0

is 
oer
ive

on X�X

0

and �nite at (A;A

0

) if and only if A has �nite perimeter in 
 and A

0

has �nite perimeter

in �
. We 
an now state our relaxation result (see se
tion 3 for the proof):

Theorem 2.1. The fun
tional �

0

is lower semi
ontinous on X �X

0

, and the relaxation of F

0

on X is given by

F

0

(A) = min

�

�

0

(A;A

0

) : A

0

2 X

0

	

: (2:6)

6



This result is still valid if we repla
e the spa
e X by the sub
lass X

v

of all A 2 X su
h that

jAj = vg, where v is a �xed number su
h that 0 < v < j
j (this re�nement of Theorem 2.1 requires

a slight modi�
ation of the proof whi
h we leave to the reader). This remark allows us to 
onsider

the minimization of F

0

under the volume 
onstraint jAj = v:

Corollary 2.2. For every v su
h that 0 < v < j
j there holds

inf

�

F

0

(A) : jAj = v

	

= min

X

v

F

0

= min

X

v

�X

0

�

0

: (2:7)

Remark 2.3. >From (2:5) and (2:6) we 
on
lude that a 
on�guration A minimizes F

0

on X

v

if

and only if (A;S

AW

) minimizes �

0

in X

v

� X

0

. In this 
ase the 
onta
t line L





oin
ides with

the dividing line L

A

0

B

0

. In subse
tion 5.2 we give an example where F

0

has no minimizer on X

v

:

indeed for every minimizing 
on�guration (A;A

0

) in X

v

�X

0

there holds A

0

6= S

AW

.

Remark 2.4. When the wetting 
ondition

j�

AW

� �

BW

j � �

AB

(2:8)

is not satis�ed, the minimum problem min

�

�

0

(A;A

0

) : A

0

2 X

0

	


an be expli
itly solved: if

�

AW

> �

BW

+�

AB

(the other 
ase is similar) then the minimum is a
hieved when A

0

is empty, and

(2:6) be
omes

F

0

(A) = �

0

(A;�) = �

AB

jS

AB

j+ (�

AB

+ �

BW

) jS

AW

j+ �

BW

jS

BB

0

j : (2:9)

This means that it is always 
onvenient to separate 
ompletely the phase A from the boundary by

inserting an in�nitely thin layer of phase B. In this 
ase F

0

has the same form as the energy E

0

in (1:1), and no line tension appears.

Remark 2.5. In the limit 
ase 
 = 0 Theorem 2.1 gives a formula for the relaxation E

0

of the

energy E

0

in (1:1): when the wetting 
ondition (2:8) is satis�ed E

0

= E

0

, (that is, E

0

is lower

semi
ontinous on X), otherwise E

0

is given by (2:9) (at least when �

AW

> �

BW

+ �

AB

).

Hen
e the relaxation of E

0

has always the same form as E

0

, only the 
oeÆ
ients 
hange. This

spe
i�
 property of E

0

explains why the relaxation step is usually skipped: one deals dire
tly with

the relaxed form by assuming a priori that the wetting 
ondition (2:8) is ful�lled, while from our

point of view this is only a 
onsequen
e of the relaxation pro
edure.

2.3. The �-
onvergen
e theorem

As before, 
 is a bounded open subset of R

3

with boundary of 
lass C

1

; W (resp. V ) is a

non-negative 
ontinuous fun
tion on R with growth at least linear at in�nity and vanishes in the

double-well I := f�; �g, with � < � (resp. in I

0

:= f�

0

; �

0

g with �

0

< �

0

). The symbol " denotes

a parameter de
reasing to 0, while �

"

is a parameter whi
h goes to in�nity as "! 0 and satis�es

lim

"!0

" log�

"

= K with 0 < K <1. (2:10)

The fun
tion H is a primitive of 2

p

W , and we set

� :=

�

�

H(�) �H(�)

�

�

= 2

Z

�

�

p

W and 
 := (�

0

� �

0

)

2

K

�

: (2:11)
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For every " > 0 and u 2 H

1

(
) we de�ne the fun
tional

F

"

(u) := "

Z




jDuj

2

+

1

"

Z




W (u) + �

"

Z

�


V (Tu) ; (2:12)

where Tu is the tra
e of u on �
.

First we want to brie
y a

ount for the 
hoi
e of the double-well potential in the boundary

energy

R

�


V (Tu) and of the s
aling (2:10). The 
ase �

"

= 0 (that is, when no boundary energy

is taken into a

ount in F

"

) was already 
onsidered in [Mo1℄ (
f. Theorem 4.2 below). The

term "

�1

R

W (u) for
es u

"

to take values 
lose to � and �, while the term "

R

jDuj

2

penalizes

the os
illations of u

"

. When " tends to 0, the fun
tions u

"


onverge (up to a subsequen
e) to a

fun
tion u 2 BV (
) whi
h takes only the values � and �. Moreover ea
h u

"

has a transition from

the value � to the value � in a thin layer 
lose to the surfa
e Su whi
h separates the bulk phases

fu = �g and fu = �g. Sin
e the energy F

"

(u

"

) tends to 
on
entrate in this layer, the limit energy

is distributed on Su with surfa
e density � (surfa
e tension).

In [Mo2℄ this analysis has been extended to the 
ase �

"

= 1 (V being any positive 
ontinuous

fun
tion). In this 
ase the tra
es Tu

"

of the minimizers u

"


onverge to a fun
tion v on �
. This

fun
tion is 
onstant on the tra
e of ea
h bulk phase, namely fTu = �g and fTu = �g, but di�ers

from Tu. The transition of u

"

from Tu to v o

urs in a thin boundary layer, and sin
e part of the

total energy F

"

(u

"

) 
on
entrates in this layer, an additional surfa
e density appears in the limit

"! 0.

In this paper we investigate the 
ase when �

"

tends to in�nity. If we assume that V is a

double-well potential, the boundary part of F

"

for
es the tra
es Tu

"

to take values 
lose to �

0

and

�

0

, while the os
illations of the tra
es Tu

"

are penalized by the bulk integral "

R

jDuj

2

. Then we

expe
t that the tra
es Tu

"


onverge to a fun
tion v whi
h takes only the values �

0

and �

0

and that

a 
on
entration of energy o

urs along line Sv whi
h separates the boundary phases fv = �

0

g and

fv = �

0

g.

The interest of this asymptoti
 model lies in the possible 
onne
tion between this line 
on-


entration of energy and the line tension phenomenon. In order to establish su
h a 
onne
tion,

we �rst have to ensure that the transition of Tu

"

from �

0

and �

0

does take pla
e in a thin layer.

This brings to the fore s
aling (2:10), whi
h also provides a uniform 
ontrol on the os
illations of

Tu

"

. In fa
t we 
an prove that under (2:10) the tra
es Tu

"


onverge (up to a subsequen
e) to a

fun
tion v in BV (�
; I

0

), and then the boundary phases fv = �

0

g and fv = �

0

g are divided by the

re
ti�able 
urve Sv.

At this stage, we investigate the relation between v and Tu. In parti
ular we wonder whether

the boundary phases agree with the tra
es of the volume phases. In general the answer is negative,

and indeed this situation is quite similar to the one des
ribed in the previous subse
tion: the

asymptoti
 behavior of the fun
tionals F

"

is des
ribed by a fun
tional � whi
h depends on the two

variables u and v. Sin
e the total energy F

"

(u

"

) is partly 
on
entrated in a thin layer 
lose to Su

(where u

"

has a transition from � to �), partly in a thin layer 
lose to the boundary (where u

"

has a transition from Tu to v), and partly in the vi
inity of Sv (where Tu

"

has a transition from

�

0

to �

0

), we expe
t that the limit energy is the sum of a surfa
e energy on 
on
entrated on Su, a

boundary energy on �
 (with density depending on the gap between Tu and v), and a line energy


on
entrated along Sv.

Pre
isely we have the following theorem (see se
tion 4 for the proof), whi
h is the main result

of this paper.

Theorem 2.6. For every u 2 BV (
; I) and v 2 BV (�
; I

0

) we set

�(u; v) := �H

2

(Su) +

Z

�


�

�

H(Tu)�H(v)

�

�

+ 
H

1

(Sv) : (2:13)
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Then the following three statements hold.

(i) Compa
tness: let (u

"

) � H

1

(
) be a sequen
e su
h that " ! 0 and F

"

(u

"

) is bounded. Then

the sequen
e (u

"

; Tu

"

) is pre-
ompa
t in L

1

(
) � L

1

(�
) and every 
luster point belongs to

BV (
; I)�BV (�
; I

0

).

(ii) Lower bound inequality: for every (u; v) in BV (
; I)�BV (�
; I

0

) and every sequen
e (u

"

) �

H

1

(
) su
h that u

"

! u in L

1

(
) and Tu

"

! v in L

1

(�
), there holds

lim inf

"!0

F

"

(u

"

) � �(u; v) : (2:14)

(iii) Upper bound inequality: for every (u; v) in BV (
; I) � BV (�
; I

0

) there exists an approxi-

mating sequen
e (u

"

) � H

1

(
) su
h that u

"

! u in L

1

(
), Tu

"

! v in L

1

(�
) and

lim sup

"!0

F

"

(u

"

) � �(u; v) : (2:15)

This theorem 
an be easily rewritten in term of �-
onvergen
e (for the de�nition and the main

properties of �-
onvergen
e we refer the reader to [DM℄, 
hapters 6-9, see also [Al℄). To this end

we extend ea
h F

"

to +1 on L

1

(
) nH

1

(
), and from Theorem 2.6 we immediately dedu
e the

following 
orollary.

Corollary 2.7. The �-limit on L

1

(
) of the fun
tionals F

"

is given by

F (u) :=

8

<

:

inf

�

�(u; v) : v 2 BV (�
; I

0

)

	

if u 2 BV (
; I),

+1 elsewhere in L

1

(
).

(2:16)

Note that the fun
tional F (u) is nonlo
al with respe
t to u, in the sense that it 
annot be

expressed by integration of a lo
al density depending on u and Du.

Statement (iii) of Theorem 2.6 
an be re�ned by 
hoosing the approximating sequen
e (u

"

)

so that

R




u

"

=

R




u for every " (we will not prove this re�nement, in fa
t one has to slightly

modify the 
onstru
tion of the approximating sequen
e (u

"

) in Lemma 4.15). This way we 
an �t

with a pres
ribed mass 
onstraint: if we take m su
h that �j
j < m < �j
j, then the fun
tionals

F

"

�-
onverge to F also on the subspa
e of all u 2 L

1

(
) su
h that

R




u = m. By a well-known

property of �-
onvergen
e and statement (i) of Theorem 2.6, we immediately dedu
e the following

result:

Corollary 2.8. For every " > 0 let u

"

be a solution of the problem

min

�

F

"

(u) :

R




u = m

	

: (2:17)

Then the sequen
e (u

"

) is pre-
ompa
t in L

1

(
), and every 
luster point belongs to BV (
; I) and

solves

min

�

F (u) :

R




u = m

	

: (2:18)

2.4. Comparison of the results

In this subse
tion we make a brief 
omparison of the results obtained in subse
tions 2.2 and

2.3. The energies �

0

and � that we have derived in the study of the relaxation of F

0

and of the

�-limit of F

"


an be written in the following general geometri
 form:

�

gen

(A;A

0

) := �

AB

jS

AB

j+ �

AA

0

jS

AA

0

j+ �

AB

0

jS

AB

0

j+

+ �

BA

0

jS

BA

0

j+ �

BB

0

jS

BB

0

j+ 
 jL

A

0

B

0

j :

(2:19)
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where (A;A

0

) belongs to the spa
e of admissible 
on�gurations X �X

0

. More pre
isely, the fun
-

tional �

0

de�ned by (2:4) agrees with �

gen

if we set

�

AA

0

:= �

AW

; �

AB

0

:= �

AB

+ �

BW

;

�

BB

0

:= �

BW

; �

BA

0

:= �

AB

+ �

AW

:

(2:20)

On the other hand, if for every u 2 BV (
; I) and v 2 BV (�
; I

0

) we 
onsider the bulk phase

A := fu(x) = �

	

� 
 and the boundary phase A

0

:= fv(x) = �

0

	

� �
, then the fun
tional �

de�ned in (2:13) satis�es the identity �(u; v) = �

gen

(A;A

0

) provided that we set

�

AB

:= � ; 
 := 
 ;

�

AA

0

:=

�

�

H(�)�H(�

0

)

�

�

; �

AB

0

:=

�

�

H(�)�H(�

0

)

�

�

;

�

BA

0

:=

�

�

H(�)�H(�

0

)

�

�

; �

BB

0

:=

�

�

H(�)�H(�

0

)

�

�

;

(2:21)

where H , � and 
 are given in (2:11).

One 
an easily 
he
k that the 
oeÆ
ients of the fun
tional �

gen


an be written in the form

(2:20) (for a suitable 
hoi
e of �

AB

, �

AW

and �

BW

) if and only if they satisfy the relations

�

AB

0

= �

AB

+ �

BB

0

and �

BA

0

= �

AB

+ �

AA

0

: (2:22)

On the other hand, taking into a

ount that the fun
tion H is stri
tly in
reasing it is easy to show

that that the 
oeÆ
ients in (2:21) ful�lls the relations in (2:22) if and only if the relative positions

of the wells �; �; �

0

; �

0

are the following:

�

0

� � < � � �

0

: (2:23)

Therefore when (2:23) is assumed we derive in a rigorous way that the model of 
apillarity with

line tension (asso
iated with F

0

) is re
overed from the Cahn-Hilliard model (asso
iated with F

"

)

in the limit "! 0. This 
arries out the main issue of our initial program.

Now we brie
y a

ount for some general features of the energies �

0

, � and �

gen

. Clearly the

fun
tional �

gen

is 
oer
ive on X �X

0

be
ause the energy densities �

AB

and 
 are stri
tly positive.

The semi
ontinuity is dis
ussed in the following statement (proved in se
tion 3).

Theorem 2.9. The fun
tional �

gen

is lower semi
ontinuous on X � X

0

if and only if the


oeÆ
ients in (2:19) veri�es the following generalized wetting 
onditions (
f. (1:2)):

�

�

�

AA

0

� �

BA

0

�

�

� �

AB

and

�

�

�

AB

0

� �

BB

0

�

�

� �

AB

: (2:24)

Remark 2.10. Obviously (2:24) is satis�ed when the 
oeÆ
ients in �

gen

are given either by (2:20)

or by (2:21); hen
e we re
over the lower semi
ontinuity of �

0

and � (
f. Theorems 2.1 and 2.6).

We may 
ompare the models asso
iated with the energies �

0

, � and �

gen

by dis
ussing the

number N of independent parameters whi
h drive the geometry of the equilibrium 
on�gurations

(i.e., the number of their degrees of freedom). Noti
e that the equilibrium 
on�gurations of �

gen

(subje
t to some volume 
onstraint) do not 
hange if we multiply all the 
oeÆ
ients in (2:19) by

a 
onstant fa
tor, or if we add the same 
onstant to the boudary 
oeÆ
ients �

AA

0

, �

AB

0

, �

BA

0

and

�

BB

0

. Hen
e for �

gen

we have N = 4.

For �

0

we have to 
onsider the two additional 
onditions in (2:22), and then N = 2.

For � the number N depends on the relative positions of �; �; �

0

; �

0

: in the 
ase �

0

< � <

� < �

0

, N = 2 be
ause we 
an redu
e to the 
ase �

0

. We let the reader 
he
k that N = 3 in the

remaining �ve 
ases.
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These 
onsiderations about the value ofN suggest the possibility of an experimental validation

either of the line tension model F

0

(i.e., �

0

), or of the model derived from the Cahn-Hilliard model

F

"

(i.e. �), or of the more general �

gen

. In fa
t all these models seem to be physi
ally a

eptable.

We 
on
lude this se
tion with some 
omments on their physi
al ba
kground.

Capillary energy with line tension, like F

0

, is frequently 
onsidered in physi
s (see [RW℄ or

[WW℄), and we have proved that the well-posed problems naturally asso
iated with F

0


an only

be de�ned through �

0

. In other words the intera
tion between the 
uids and the wall 
an be

eÆ
iently des
ribed only by 
onsidering two boundary phases whi
h are independent of the bulk

phases. Noti
e that the idea of phase transition between surfa
es phases on the wall of the 
ontainer

has already been suggested (see for instan
e [DG℄).

As noti
ed before, �

0

is obtained from �

gen

imposing the restri
tions (2:22). In the relax-

ation pro
edure whi
h leads to �

0

, the interfa
e S

AB

0

is viewed as the part of the wall where an

in�nitesimal layer of the phase B is interposed between the phase A and the wall of the 
ontainer

(a similar argument applies to S

BA

0

), and the relations (2:22) are a 
onsequen
e of the fa
t that

the energy density of su
h a layer is simply the sum of �

AB

(due to the transition from A to B)

and �

BW

(due to the transition from B to the wall). On a physi
al level, su
h a superposition

prin
iple has no reason to hold: 
onsider for instan
e a layer whose thi
kness has the same order

as the range of the intera
tion for
es whi
h generate the surfa
e tension. Then it is quite natural

to 
onsider generalized energies of the form �

gen

.

The fun
tional � whi
h 
orresponds to the asymptoti
 limit of the Cahn-Hilliard model,

appears as an intermediate 
ase between �

0

and �

gen

(and indeed for � we have N = 2 or N = 3).

The Cahn-Hilliard model, despite its relative simpli
ity, is known to des
ribe eÆ
iently many

interfa
ial phenomena. In this paper we show that it 
an be used to des
ribe line tension phenomena

as well. One may question the physi
al ground of the boundary energy we postulated, and in

parti
ular on the double-well potential V and the s
aling (2:10) for �

"

. Indeed these assumptions

are totally di�erent from those of Cahn and Hilliard [CH℄ or Modi
a [Mo2℄ (where �

"

does not

depend on " and V is a monotone fun
tion). To our knowledge, the boundary energy 
annot be

rea
hed by dire
t experiments, but only through its e�e
ts on the ma
ros
opi
 equilibrium. We

justify our assumptions a posteriori by the relevan
e of the model asso
iated with the limit energy

�.

3. Proof of the relaxation result

This se
tion is devoted to the proof of Theorem 2.1 and Theorem 2.9.

We follow here the notation introdu
ed in subse
tion 2.2; in parti
ular, given sets A and B

in 
 (resp. in �
) the identity A = B must be intended up to negligible subsets, that is, in the

sense of the spa
e X (resp. X

0

). We also re
all that �A denotes the essential boundary of A, and

not the topologi
al one. All statements and proofs in this se
tion 
an be adapted without essential

modi�
ations to arbitrary dimension.

Lemma 3.1. Let be given B � �
. Then for every Æ > 0 there exists E with �nite perimeter in


 su
h that

(i) B is the tra
e of E on �
, that is, B = �E \ �
;

(ii) jEj � Æ and j�E \ 
j � jBj+ Æ.

Proof. This statement is an immediate 
orollary of a well-known result of Gagliardo (see for instan
e

[Gi℄, Theorem 2.16).
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Lemma 3.2. Let be given M � �
. Then the fun
tional A 7! j�A \ 
j � j�A4M j is lower

semi
ontinuous on X.

Proof. We apply Lemma 3.1 with 
 and B repla
ed by R

3

n 
 and �
 nM respe
tively, and we

�nd a set E � R

3

n
 with �nite perimeter in R

3

n
 so that �E \ �
 = �
 nM .

Then �
 n �E = M and, sin
e A \ E = � for every A 2 X , we have that �(A [ E) is the

disjoint union of �A \ 
, �E n
 and �
 \ �(A [ E), and �
 \ �(A [ E) = �
 n (�A4M).

E

 A
M

Figure 2: the sets M and E.

Hen
e

j�A \ 
j � j�A4M j = j�(A [ E)j+ j�E n 
j+ j�
j :

Sin
e E is �xed, the thesis follows from the lower semi
ontinuity of the perimeter j�(A [E)j with

respe
t to A.

Proof of Theorem 2.9

We assume �rst that the generalized wetting 
ondition (2:24) does not hold, and in parti
ular

that �

AA

0

> �

AB

+ �

BA

0

(the other three 
ases 
an be treated in the same way). We argue now as

for the la
k of semi
ontinuity of F

0

(see subse
tion 2.2).

Fix a 
on�guration (A;A

0

) 2 X �X

0

su
h that jS

AA

0

j > 0. For every Æ > 0 we apply Lemma

3.1 to �nd a set E

Æ

� 
 su
h that �E

Æ

\ �
 = A

0

\ �A, jE

Æ

j � Æ, and j�E

Æ

\ 
j � jA

0

\ �Aj+ Æ,

and then we set A

Æ

:= A nE

Æ

.

A Aδ

A'

A, Aδ

Figure 3: the sets A, A

0

, and A

Æ

.

Hen
e A

Æ


onverge to A in X as Æ ! 0. Moreover for the 
on�guration (A

Æ

;A) there holds

S

A

Æ

A

0

= �, S

B

Æ

A

0

= A

0

= S

BA

0

[S

AA

0

, jS

A

Æ

B

Æ

j � jS

AB

j + jS

AA

0

j + Æ, while S

A

Æ

B

0

= S

AB

0

and

S

B

Æ

B

0

= S

BB

0

. Then

�

gen

(A

Æ

;A

0

) � �

gen

(A;A

0

)� (�

AB

+ �

BA

0

� �

AA

0

) jS

AA

0

j+ Æ ;

and sin
e both (�

AB

+ �

BA

0

� �

AA

0

) and jS

AA

0

j are positive we obtain

lim inf

Æ!0

�

gen

(A

Æ

;A

0

) < �

gen

(A;A

0

) ;

whi
h proves that �

gen

is not lower semi
ontinuous at (A;A

0

).

We prove now the opposite impli
ation. Let us assume that (2:24) holds and let be given

A

n

! A in X and A

0

n

! A

0

in X

0

. We may assume that sup

n

�

gen

(A

n

;A

0

n

) is �nite, so that

12



j�A \ 
j and jL

A

0

B

0

j are �nite. By applying Lemma 3.2 with M := �A \ �
, we obtain the

following lower bound:

lim inf

n!1

�

j�A

n

\ 
j � j�A \ 
j � j(�A

n

4�A) \ �
j

�

� 0 : (3:1)

By the lower semi
ontinuity of the perimeter, the fun
tional A

0

7! �

gen

(A;A

0

) is lower semi
ontin-

uous on X

0

. Hen
e

lim inf

n!1

�

gen

(A;A

0

n

) � �

gen

(A;A

0

) : (3:2)

On the other hand, let �

n

(x) and �̂

n

(x) denote respe
tively the surfa
e energy densities at x of

the 
on�gurations (A

n

;A

0

n

) and (A;A

0

n

) (for every n and every x 2 �
); one easily veri�es that

if x =2 �A

n

4�A then �

n

(x) = �̂

n

(x), while if x 2 �A

n

4�A the inequalities in (2:24) implies

�

n

(x) � �̂

n

(x) � �

AB

. Thus we 
an write

�

gen

(A

n

;A

0

n

) = �

AA

0

j�A

n

\ �
j+

Z

�


�

n

(x) + 
jL

A

0

n

B

0

n

j

� �

AA

0

j�A

n

\ �
j+

Z

�


�̂

n

(x)� �

AB

j(�A

n

4�A) \ �
j+ 
jL

A

0

n

B

0

n

j

� �

gen

(A;A

0

n

) + �

AB

�

j�A

n

\ 
)j � j�A \ 
)j � j(�A

n

4�A) \ �
j

�

:

Now we take the lower limit as n!1, and with the help of (3:1) and (3:2) we dedu
e

lim inf

n!1

�

gen

(A

n

;A

0

n

) � �

gen

(A;A

0

) :

Proof of Theorem 2.1

The 
oeÆ
ients in the fun
tionals �

0

given in (2:4) ful�ll the generalized wetting 
ondition

(2:24), and then �

0

is lower semi
ontinuous on X �X

0

by Theorem 2.9.

Let be given now A

n

! A inX so that F

0

(A

n

) is bounded. The sets A

n

have uniformly bounded

perimeters in �
 (
f. (1:4)); then the sequen
e (S

A

n

W

) is pre-
ompa
t in X

0

, and possibly passing

to a subsequen
e we may assume that it 
onverge to some A

0

2 X

0

. Now identity (2:5) and the

semi
ontinuity of �

0

imply

lim inf

n!1

F

0

(A

n

) = lim inf

n!1

�

0

(A

n

;S

A

n

W

) � �

0

(A;A

0

) : (3:3)

Inequality (3:3) shows that the left hand side of (2:6) is larger than the right hand side. To obtain

the equality it suÆ
es to �nd, for every 
on�guration (A;A

0

) 2 X �X

0

with �nite energy �

0

, an

approximating sequen
e A

n

! A su
h that

lim inf

n!1

F

0

(A

n

) � �

0

(A;A

0

) : (3:4)

Here we use an argument similar to the �rst part of the proof of Theorem 2.9: by Lemma 3.1, for

every n > 0 we �nd a set E

n

with �nite perimeter in 
 su
h that

(i) �E

n

\ �
 = A

0

4�A,

(ii) jE

n

j � 1=n and j�E

n

\ 
j � jA

0

4�Aj+ 1=n.

We set A

n

:= A4E

n

: by (i) we have S

A

n

W

= �A

n

\ �
 = A

0

and by (ii)

A

n

! A in X ; j�A

n

\ 
j � j�A \ 
j+ jA

0

4�Aj+ 1=n :
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Hen
e

F

0

(A

n

) � �

AB

�

jS

AB

j+ jA

0

4�Aj+ 1=n

�

+ �

AW

jA

0

j+ �

BW

jB

0

j+ 
j�A

0

j

= �

AB

jS

AB

j+ �

AW

jA

0

\ �Aj+ (�

AW

+ �

AB

) jA

0

n �Aj +

+ �

BW

jB

0

n �Aj+ (�

BW

+ �

AB

) jB

0

\ �Aj+ 
j�A

0

j+

�

AB

n

= �

0

(A;A

0

) +

�

AB

n

:

We obtain (3:4) by letting n tend to 1.

4. Proof of the �-
onvergen
e result

In this se
tion we prove Theorem 2.6. In order to simplify the proof, we will make two

additional assumptions: �rst we will assume that �
 is of 
lass C

2

. This restri
tion is used in the

proof of statement (iii) of Theorem 2.6, and 
an be relaxed with some additional work to �
 of


lass C

1

. However we 
annot go below the C

1

regularity. The se
ond assumption 
on
erns the

potentials V and W :

there exists m so that �m � �; �

0

; �; �

0

� m, W (x) � W (m) and V (x) �

V (m) for x � m, and W (x) �W (�m) and V (x) � V (�m) for x � �m.

(4:1)

For instan
e, this 
ondition is veri�ed when V and W are in
reasing on [m;+1) and de
reasing

on (�1:�m℄ for some positive m. Assumption (4:1) will allow us to use the trun
ation argument

given Lemma 4.1. It 
an be removed but in that 
ase the proof of Proposition 4.7 would require

more deli
ates trun
ation arguments whi
h we prefer to avoid.

>From now on we always use the term \sequen
e" also to denote families (of fun
tions) labelled

by the 
ontinuous parameter ", whi
h tends to 0. On this line, a subsequen
e of (u

"

) is any sequen
e

(u

"

n

) su
h that "

n

! 0 as n!1, and we say that (u

"

) is pre-
ompa
t if every subsequen
e admits

a 
onverging sub-subsequen
e. To simplify the notation we often omit to relabel subsequen
es, and

we say \a 
ountable sequen
e (u

"

)" to mean a sequen
e de�ned only for 
ountably many " = "

n

su
h that "

n

! 0 as n!1 (we refer in parti
ular to statements (i) in Theorems 4.2 and 4.4).

To begin we introdu
e the lo
alization of the fun
tionals F

"

: for every domain A � R

3

, every

set A

0

� �A and every u 2 H

1

(A) we set

F

"

(u;A;A

0

) := "

Z

A

jDuj

2

+

1

"

Z

A

W (u) + �

"

Z

A

0

V (Tu) (4:2)

(a

ording to our 
onvention the measure in the last integral is H

2

). Noti
e that F

"

(u) =

F

"

(u;
; �
) for every u 2 H

1

(
).

Lemma 4.1. Let be given a domain A � R

3

and a set A

0

� �A, and a sequen
e (u

"

) � H

1

(A)

with uniformly bounded energies F

"

(u

"

; A;A

0

). If we take the trun
ated fun
tions �u

"

(x) := (u

"

(x)^

m)_�m, then F

"

(�u

"

; A;A

0

) � F

"

(u

"

; A;A

0

), and both k�u

"

�u

"

k

L

1

(A)

and kT �u

"

�Tu

"

k

L

1

(A

0

)

vanish

as "! 0.

Proof. The inequality F

"

(�u

"

; A;A

0

) � F

"

(u

"

; A;A

0

) follows immediately from (4:1). The rest of the

statement follows from the fa
t that both W and V have growth at least linear at in�nity and the

integrals

R

W (u

"

) and

R

V (Tu

"

) vanish as " ! 0. This is a standard argument, and we omit it

(see for instan
e [AB℄, Lemma 1.11).

In order to prove Theorem 2.6 we need some �-
onvergen
e results whi
h we group in the

following subse
tion.
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4.1. Preliminary 
onvergen
e results

We begin with the basi
 �-
onvergen
e result for fun
tionals of Cahn-Hilliard type: for every

domain A � R

3

and every real fun
tion u 2 H

1

(A) we set

G

1

"

(u;A) := "

Z

A

jDuj

2

+

1

"

Z

A

W (u) ; (4:3)

where W is the double-well potential given in subse
tion 2.3. Noti
e that G

1

"

(u;A) = F

"

(u;A;�).

Theorem 4.2. (see [MM℄, [Mo℄)

For every domain A � R

3

the following three statements hold:

(i) every 
ountable sequen
e (u

"

) � H

1

(A) with uniformly bounded energies G

1

"

(u

"

; A) is pre-


ompa
t in L

1

(A) and every 
luster point belongs to BV (A; I);

(ii) for every u 2 BV (A; I) and every sequen
e (u

"

) � H

1

(A) su
h that u

"

! u in L

1

(A) there

holds

lim inf

"!0

G

1

"

(u

"

; A) � �H

2

(Su) ;

(iii) for every u 2 BV (A; I) there exists a sequen
e (u

"

) � H

1

(A) su
h that u

"

! u in L

1

(A) and

lim sup

"!0

G

1

"

(u

"

; A) � �H

2

(Su) ;

moreover when Su is a 
losed Lips
hitz surfa
e in A, we may require that ea
h u

"

is (C=")-

Lips
hitz and (u

"

) 
onverges to u uniformly on every set with positive distan
e from Su (here

C is the supremum of

p

W in [�; �℄).

Proof. This version of the Modi
a-Mortola theorem 
an be found in [Mo1℄ (see also [Al℄). However

the se
ond part of statement (iii) is not expli
itely stated there, and therefore we brie
y sket
h its

proof.

Let ' : R ! [�; �℄ be an optimal pro�le for the 1-dimensional fun
tional

R

( _v

2

+W (v)), that

is, a global solution of the ordinary di�erential _' =

p

W (') with '(0) arbitrarily taken in ℄�; �[.

Then ' is in
reasing, 
onverges to � at +1 and to � at �1, and satis�es

Z

R

( _'

2

+W (')) =

Z

R

2

p

W (') _' = H(�)�H(�) = � : (4:4)

Let now be given u 2 BV (
; I) su
h that Su is a Lips
hitz surfa
e, and denote by d the oriented

distan
e from Su given by d(x) := dist (x; Su) when x 2 fu = �g, and by d(x) := �dist (x; Su)

when x 2 fu = �g. We set u

"

(x) := '

�

d(x)="

�

for every " > 0 and x 2 
. One readily 
he
ks

that ea
h u

"

is (C=")-Lips
hitz (be
ause ' is C-Lips
hitz) and 
onverge to u uniformly on every

set with positive distan
e from Su. Taking into a

ount that jDdj = 1 a.e. in 
, by the 
oarea

formula one gets

G

1

"

(u

"

; A) =

Z

A

1

"

�

_'

2

(d=") +W (d=")

�

=

Z

R

�

_'

2

(t) +W (t)

�

H

2

(�

"t

) dt ; (4:5)

where �

s

:= fx : d(x) = sg is the s-level set of d. Sin
e Su is Lips
hitz, H

2

(�

s

) 
onverges to

H

2

(Su) as s! 0, and if we use (4:4) and apply the dominated 
onvergen
e theorem in (4:5), we

obtain that G

1

"

(u

"

; A) 
onverges to �H

2

(Su) as "! 0.

Theorem 4.2 
aptures 
ompletely the asymptoti
 behaviour of the energies F

"

in the interior

of 
, and justi�es the term �H

2

(Su) in the limit energy � (see (2:13)). The se
ond term in �,

namely

R

�


�

�

H(Tu)�H(v)

�

�

, will be derived from the following proposition.
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Proposition 4.3. Assume that A � R

3

is a domain with boundary pie
ewise of 
lass C

1

, and A

0

is a subset of �A with Lips
hitz boundary, and let be given u 2 L

1

(A) , v 2 L

1

(A

0

). Then

(i) for every sequen
e (u

"

) � H

1

(A) su
h that u

"

! u in L

1

(A) and Tu

"

! v in L

1

(A

0

) there

holds

lim inf

"!0

G

1

"

(u

"

; A) �

Z

A

0

�

�

H(Tu)�H(v)

�

�

;

(ii) if v is 
onstant on A

0

and u is 
onstant on A with u � � or u � �, there exists a sequen
e

(u

"

) su
h that Tu

"

= v on A

0

, u

"


onverges uniformly to u on every set with positive distan
e

from A

0

and

lim sup

"!0

G

1

"

(u

"

; A) �

Z

A

0

�

�

H(Tu)�H(v)

�

�

;

moreover ea
h u

"


an be taken (C=")-Lips
hitz, where C is the supremum of

p

W over any

interval whi
h 
ontains the values of u and v.

Proof. Statement (i) is the key lemma in the proof of the main result of [Mo2℄, statement (ii) is

essentially 
ontained in that paper, but not stated in this form. The proof is a modi�
ation of the

argument of the proof of Theorem 4.2. We 
onsider the 
ase u � � and v � 
, with � < 
 < �

(the other 
ases 
an be treated in a similar way).

Let ' : [0;+1[! [
; �℄ be a solution of the ordinary di�erential _' =

p

W (') with '(0) = 
;

then ' is in
reasing, 
onverges to � at +1, and satis�es (
f. (4:4))

Z

1

0

( _'

2

+W (')) =

Z

1

0

2

p

W (') _' = H(�)�H(
) :

Denote by d(x) the distan
e of x from A

0

and set u

"

(x) := '

�

d(x)="

�

for every " > 0 and x 2 
.

One readily 
he
ks that u

"


onverge to u uniformly on every set with positive distan
e from A

0

,

u

"

is (C=")-Lips
hitz and G

1

"

(u

"

; A) 
onverge to

�

H(�) �H(
)

�

H

2

(A

0

).

The last term in �, namely 
H

1

(Sv), requires a more deli
ate treatment. The next steps

are 
ru
ial in the proof of the statements (i) and (ii) of Theorem 2.6. We begin with a singular

perturbation theorem for one-dimensional fun
tionals: for every interval E � R and every fun
tion

v 2 L

1

(E) we set

G

2

"

(v; E) :=

"

2�

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx + �

"

Z

E

V (v) : (4:6)

Here we have repla
ed the usual Diri
hlet integral by a nonlo
al energy whi
h is dire
tly related to

the square of the norm of the spa
e H

1

2

(E). We will use G

2

"

(v; E) to write the value of F

"

(u;B \


; B \ �
) in term of the tra
e v of u on B \ �
 in the parti
ular 
ase where B \ �
 is a 
at disk

(see Proposition 4.7).

Theorem 4.4. (
f. [ABS1℄)

Let V be given as in subse
tion 2.3. Then the following statements hold:

(i) every 
ountable sequen
e (v

"

) � L

1

(E) with uniformly bounded energies G

2

"

(v

"

; E) is pre-


ompa
t in L

1

(E) and every 
luster points belongs to BV (E; I

0

).

(ii) For every v 2 BV (E; I

0

) and every sequen
e (v

"

) su
h that v

"

! v in L

1

(E) there holds

lim inf

"!0

G

2

"

(v

"

; E) � 
#(Sv) (4:7)

where #(Sv) denotes as usual the number of points in Sv.

In order to prove Theorem 4.4 we need the following estimate:
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Lemma 4.5. Let be given Æ su
h that 0 < Æ <

�

0

��

0

2

. For every interval J � E, " > 0

and v 2 L

1

(E), let A = A(J; "; v) and B = B(J; "; v) be the sets of all points x 2 J su
h that

v(x) � �

0

+ Æ and v(x) � �

0

� Æ respe
tively, and set

a = a(J; "; v) :=

jA \ J j

jJ j

; b = b(J; "; v) :=

jB \ J j

jJ j

;

� := inf

�

V (t) : �

0

+ Æ � t � �

0

� Æ

	

:

(4:8)

Then for " �

��jJj

(�

0

��

0

�2Æ)

2

we have

G

2

"

(u

"

; J) �

"

�

(�

0

� �

0

� 2Æ)

2

�

log(ab) + log(�

"

)

�

: (4:9)

Proof. The proof relies on the following key inequality, whi
h is obtained by applying Proposition

6.1 with 	(s) := 1=s

2

and [t; y℄ := J

Z

A�B

dx

0

dx

jx

0

� xj

2

� log

h

1 +

ab

1� a� b

i

: (4:10)

By (4:6) and (4:8) we get

G

2

"

(v; J) �

"

2�

Z

(A�B)[(B�A)

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx + �

"

Z

Jn(A[B)

V (v)

�

"

�

(�

0

� �

0

� 2Æ)

2

Z

A�B

dx

0

dx

jx

0

� xj

2

+ �

"

�

�

�

J n (A [B)

�

�

and by (4:10)

�

"

�

(�

0

� �

0

� 2Æ)

2

log

h

1 +

ab

1� a� b

i

+ �

"

�(1� a� b) jJ j

�

"

�

(�

0

� �

0

� 2Æ)

2

h

log(ab)� log(1� a� b) +

��

"

�jJ j

"(�

0

� �

0

� 2Æ)

2

(1� a� b)

i

now we apply the inequality � log t+Mt � logM with M :=

��

"

�jJj

"(�

2

��

2

�2Æ)

2

and t := 1� a� b, and

re
alling the assumptions on " we get

�

"

�

(�

0

� �

0

� 2Æ)

2

h

log(ab) + log

�

��

"

�jJ j

"(�

0

� �

0

� 2Æ)

2

�i

�

"

�

(�

0

� �

0

� 2Æ)

2

�

log(ab) + log�

"

�

:

Proof of Theorem 4.4

The proof redu
es to the following statement: given a 
ountable sequen
e (v

"

) su
h that

G

2

"

(v

"

; E) is bounded, possibly passing to a subsequen
e we have that v

"


onverge in L

1

(E) to

some v 2 BV (E; I

0

), and inequality (4:7) holds.

By a standard trun
ation argument we 
an assume from the beginning that �

0

� v

"

� �

0

for

every " > 0. Possibly passing to a subsequen
e we 
an assume that the (v

"

) 
onverges weakly* in

L

1

(E) to some fun
tion v and generates a Young measure x 7! �

x

(for a detailed exposition of

the theory of Young measures, we refer to [Va1-2℄).
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Sin
e �

"

!1 as "! 0 and G

2

"

(v

"

; E) is bounded in ", we dedu
e that the integral

R

E

V (v

"

)

vanishes as "! 0, and then

Z

E

�

Z

R

V (t) d�

x

(t)

�

dx = 0 :

AsW (t) = 0 if and only if t = �

0

or t = �

0

, the probability measure �

x

is supported on I

0

= f�

0

; �

0

g

for a.a. x; in other words there exists a fun
tion � : E ! [0; 1℄ su
h that

�

x

= �(x) � Æ

�

0

+ (1� �(x)) � Æ

�

0

for a.e. x 2 E. (4:11)

We 
laim that � belongs to BV (E; f0; 1g). Take indeed an interval J � E and Æ su
h that

0 < Æ <

�

0

��

0

2

, and de�ne a

"

:= a(J; "; v

"

) and b

"

:= b(J; "; v

"

) as in (4:8). By Lemma 4.5 we

obtain that for " small enough

G

2

"

(v

"

; J) �

"

�

(�

0

� �

0

� 2Æ)

2

�

log(a

"

b

"

) + log�

"

�

: (4:12)

Furthermore one readily 
he
ks that when "! 0

a

"

! a(J) :=

1

jJj

R

J

� and b

"

! b(J) :=

1

jJj

R

J

(1� �) :

If a(J) � b(J) > 0, when we pass to the limit in (4:12) we get

lim inf

"!0

G

2

"

(v

"

; J) �

K

�

(�

0

� �

0

)

2

= 
 (4:13)

(re
all that " log�

"

! K and Æ 
an be taken arbitrarily small).

Consider now the set S of all x 2 E su
h that the approximate limit of � at x does not exists

or belongs to ℄0; 1[. For every �nite integer m � #(S) we 
an �nd pairwise disjoint open intervals

J

i

, i = 1; : : : ;m, su
h that J

i

\ S 6= �. Then a(J

i

) � b(J

i

) > 0 and (4:13) be
omes

lim inf

"!0

G

2

"

(v

"

; J

i

) � 
 ;

and sin
e G

2

"

(v

"

; �) is super-additive on disjoint sets,

lim inf

"!0

G

2

"

(v

"

; E) �

m

X

i=1

lim inf

"!0

G

2

"

(v

"

; J

i

) � m
 : (4:14)

Hen
e S is �nite, and sin
e � has approximate limit equal to 0 or 1 outside of S, we dedu
e that

� belongs to BV (E; f0; 1g) and S� = S. The 
laim is proved.

A

ording to (4:11) we dedu
e that �

x

is a Dira
 mass for almost every x; hen
e v

"


onverge

strongly to v and

v(x) := �

0

�(x) + �

0

(1� �(x)) for a.e. x 2 E.

Then v belongs to BV (E; I

0

), Sv = S� = S and by taking m = #(S) in (4:14) we get

lim inf

"!0

G

2

"

(v

"

; E) � 
#(Sv) :

Remark 4.6. In [ABS1℄, we proved that the lower bound given in (4:9) is in fa
t optimal: for every

v 2 BV (E; I

0

) we 
an �nd a sequen
e (v

"

) � H

1

(E) su
h that v

"

7! v in L

1

(E) and

lim

"!0

G

2

"

(v

"

; E) = 
#(Sv) : (4:15)
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Therefore the fun
tionals G

2

"

(�; E) �-
onverge in L

1

(E) to the fun
tional whi
h is equal to 
#(Sv)

for every v 2 BV (E; I

0

) and to +1 elsewhere.

Using Theorem 4.4 and a suitable sli
ing argument we 
an obtain the optimal lower bound

for the energies F

"

(u;B \ 
; B \ �
) when B is a ball 
entered on �
 and B \ �
 is a 
at disk

(Proposition 4.7). Later on we will show that this 
atness assumptions 
an be dropped when B is

suÆ
iently small.

Proposition 4.7. For every r > 0, let D

r

be the open half-ball of all x = (x

1

; x

2

; x

3

) 2 R

3

su
h

that jxj < r and x

3

> 0, and E

r

the disk of all x su
h that jxj < r and x

3

= 0. Let (u

"

) � H

1

(D

r

)

be a 
ountable sequen
e with uniformly bounded energies F

"

(u

"

; D

r

; E

r

). Then the tra
es Tu

"

are

pre-
ompa
t in L

1

(E

r

) and every 
luster point belongs to BV (E

r

; I

0

); moreover if Tu

"

! v in

L

1

(E

r

), then

lim inf

"!0

F

"

(u

"

; D

r

; E

r

) � 


�

�

�

Z

E

r

\Sv

�

v

�

�

�

: (4:16)

Proof. By Lemma 4.1 we 
an assume that ju

"

j � m where m is the 
onstant in (4:1). To simplify

the notation we write D and E.

The idea is to redu
e to statement (i) of Theorem 4.4 via a suitable sli
ing argument. We �x

now an arbitrary unit ve
tor e in the plane P := fx

3

= 0g, and we denote by M the orthogonal


omplement of E in P and by � the proje
tion of R

3

onto M . The segment �(E) is 
alled E

e

; for

every y 2 E

e

, E

y

denotes the segment �

�1

(y) \ E and D

y

the half-disk �

�1

(y) \D.

 e  e

 M

 M
 E

 E

 D

 E e

 E e

 y D
 E y

 y

 y

 x 3

Figure 4: the sets D, E, E

e

, E

y

and D

y

.

For every y 2 E

e

and every fun
tion u on D, u

y

denotes the restri
tion of u on D

y

, and for

every fun
tion v on E, v

y

denotes the restri
tion of v on E

y

. If u 2 H

1

(D), then for a.e. y 2 E

e

the fun
tion u

y

belongs to H

1

(D

y

), the gradient of u

y

agrees a.e. in D

y

with the proje
tion of Du

on the plane spanned by the ve
tor e and the axis x

3

, and the tra
e of u

y

on E

y

agrees a.e. in E

y

with (Tu)

y

(
f. Proposition 6.8). Taking into a

ount these fa
ts and Fubini's theorem, for every

" > 0 we get

F

"

(u;D;E) � "

Z

D

jDuj

2

+ �

"

Z

E

V (Tu)

�

Z

E

e

h

Z

D

y

jDu

y

j

2

+ �

"

Z

E

y

V (Tu

y

)

i

dy

We apply now the tra
e inequality (6:6) to ea
h fun
tion u

y

on the half-disk D

y

, and then

F

"

(u;D;E) �

Z

E

e

h

"

2�

Z

(E

y

)

2

�

�

�

Tu

y

(x

0

)� Tu

y

(x)

x

0

� x

�

�

�

dx

0

dx+ �

"

Z

E

y

V (Tu

y

)

i

dy

=

Z

E

e

G

2

"

(Tu

y

; E

y

) dy : (4:17)
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Let us prove that the sequen
e (Tu

"

) is pre-
ompa
t in L

1

(E). To this end it suÆ
es to show

that the family F := fTu

"

g satis�es the assumptions of Theorem 6.6 for every of the unit ve
tor

e. Thus we �x Æ > 0 and we 
hoose a 
onstant C su
h that

F

"

(u

"

; D;E) � C ; (4:18)

for every " we take v

"

: E ! [�m;m℄ de�ned by

v

y

"

:=

(

Tu

y

"

for all y 2 E

e

s.t. G

2

"

(Tu

y

"

; E

y

) � 2mrC=Æ,

�

0

otherwise.

(4:19)

By (4:17), (4:18) and (4:19) we have v

y

"

= Tu

y

"

for all y 2 E

e

apart a subset of measure smaller than

Æ=(2mr). Hen
e v

"

= Tu

"

in E minus a set of measure smaller that Æ=m and, sin
e jTu

"

j � m,

we dedu
e that kv

"

� Tu

"

k

L

1

(E)

� Æ. Therefore the family F

Æ

:= fv

"

g is Æ-dense in F in the

sense of subse
tion 6.3; by (4:19), G

2

"

(v

y

"

; E

y

) � 2mrC=Æ for every y 2 E

e

and every ", and hen
e

statement (i) of Theorem 4.4 implies that the sequen
e (v

y

"

) is pre-
ompa
t in L

1

(E

y

). Thus F

satis�es 
ondition (6:9) in Theorem 6.6 for every e, and then the sequen
e (Tu

"

) is pre-
ompa
t

in L

1

(E).

It remains to prove that if Tu

"

! v in L

1

(E

r

), then v belongs to BV (E

r

; I

0

) and inequality

(4:16) holds. repla
ing u by u

"

in (4:2) and passing to the limit as " ! 0, by Fatou's lemma we

dedu
e that

lim inf

"!0

F

"

(u

"

; D;E) �

Z

E

e

lim inf

"!0

G

2

"

(Tu

y

"

; E

y

) dy ;

and then lim inf G

2

"

(Tu

y

"

; E

y

) is �nite for a.e. y 2 E

e

.

Sin
e Tu

"

! v in L

1

(E

r

), possibly passing to a subsequen
e we have that Tu

y

"

! v

y

in

L

1

(E

r

) for a.e. y 2 E

e

(
f. Remark 6.7). Then statements (i) and (ii) of Theorem 4.4 yield

v

y

2 BV (E

y

; I

0

) and

lim inf

"!0

F

"

(u

"

; D;E) �

Z

E

e


#(Sv

y

) dy : (4:20)

The right hand side of (4:20) is �nite, and then Proposition 6.9 implies that v belongs to BV (E; I

0

)

and that Sv

y

agrees with Sv \ E

y

for a.e. y 2 E

e

. By (6:14), we may rewrite (4:20) as

lim inf

"!0

F

"

(u

"

; D;E) � 


Z

D\Sv

h�

v

; ei : (4:21)

Finally (4:16) follows from (4:21) by 
hoosing a suitable unit ve
tor e.

4.2. Redu
tion to the 
at 
ase

The 
ontribution of the wall to the limit energy � will be obtained by estimating the asymp-

toti
 behaviour of F

"

(u;B \
; B \ �
) when B is a small ball 
entered on �
. This estimate will

be derived by Proposition 4.7, provided we 
an evaluate the error we make when we perturb B\


to get an half-ball. We expe
t of 
ourse that this error goes to zero with the radius of B and that it

is 
ontrolled by the 
atness of the boundary �
, but making this argument pre
ise requires some


omputations. We �rst des
ribe the behaviour of F

"

under 
hange of variable.

De�nition 4.8. Given two domains A

1

; A

2

� R

3

and a bi-Lips
hitz homeomorphism 	 : A

1

!

A

2

, the isometry defe
t Æ(	) of 	 is the smallest 
onstant Æ su
h that

dist

�

D	(x); O(3)

�

� Æ for a.e. x 2 A

1

, (4:22)
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here O(3) is the set of linear isometries on R

3

, and D	(x) is regarded as a linear mapping of R

3

into R

3

; the distan
e between linear mappings is indu
ed by the norm k � k, whi
h for every T is

de�ned as the supremum of jTvj over all v su
h that jvj � 1.

Given T and L su
h that L is an isometry, the inequality kT �Lk � Æ with Æ < 1 implies that

T is invertible and kT

�1

� L

�1

k � Æ

Æ

(1 � Æ). Hen
e (4:22) implies that dist

�

D	

�1

(y); O(3)

�

�

Æ

Æ

(1� Æ) for a.e. y 2 A

2

, that is, Æ(	

�1

) � Æ(	)

Æ

(1� Æ(	)).

Inequality (4:22) also implies that kD	k � 1 + Æ a.e. in A

1

, and then 	 is (1 + Æ)-Lips
hitz

on every 
onvex subset of A

1

; similarly, 	

�1

is (1� Æ)

�1

-Lips
hitz on every 
onvex subset of A

2

.

Proposition 4.9. Let be given A

1

; A

2

and 	 as above, and assume that 	 maps a 
ertain set

A

0

1

� �A

1

onto A

0

2

� �A

2

. Then for every u 2 H

1

(A

2

) there holds

F

"

(u;A

2

; A

0

2

) �

�

1� Æ(	)

�

5

F

"

(u Æ	; A

1

; A

0

1

) : (4:23)

Proof. Let Æ := Æ(	) and assume that Æ < 1. By (4:22) we get kD	k � 1 + Æ a.e. in A

1

, and then

�

�

D(u Æ	)

�

�

� (1 + Æ)

�

�

(Du) Æ	

�

�

a.e. in A

1

. (4:24)

Let g and g

0

denote the inverse of 	 and the restri
tion of the inverse of 	 to the boundary of

A

2

. The maps g and g

0

are lo
ally (1� Æ)

�1

-Lips
hitz, and then the Ja
obian determinants satisfy

jJgj � (1 � Æ)

�3

a.e. on A

2

and jJg

0

j � (1 � Æ)

�3

a.e. on �A

2

. Using these estimates and the

inequality (1 � Æ)

�1

� 1 + Æ, one 
an derive (4:23) from (4:24) by the usual 
hange of variable

formula.

Proposition 4.10. For every x 2 �
 and every positive r smaller than a 
ertain 
riti
al value

r

x

> 0, there exists a bi-Lips
hitz map 	

r

: D

r

! 
 \ B

r

(x) su
h that

(a) 	

r

takes D

r

onto 
 \B

r

(x) and E

r

onto �
 \ B

r

(x);

(b) 	

r

is of 
lass C

1

on D

r

and kD	

r

� Ik � Æ

r

everywhere in D

r

, where Æ

r

! 0 as r ! 0.

(Here I denotes the identity map on R

3

). In parti
ular the isometry defe
t of 	

r

vanishes as

r ! 0.

Proof. We assume that x = 0 and the tangent plane T

x

(�
) agrees with the plane fx

3

= 0g, and

we write B

r

for B

r

(x). For every positive 
 < 1 and for every r suÆ
iently small, we 
onstru
t a

map 	 whi
h ful�lls (a) and kD	� Ik � O(
).

Sin
e �
 is of 
lass C

1

, for r suÆ
iently small we redu
e to the situation des
ribed in �gure

5 below:

Ψ1 Ψ2 Ψ1
−1

0

 x3
 AE  × (0,γ r)r

 Dr

 Br
γ

Ω ∩ Bγ
r

Ω

 x = 0 γ r

 graph of  f : E  → (−γ r, γ r)r

Figure 5: 
onstru
tion of 	 := 	

�1

1

Æ	

2

Æ	

1

.

Here B




r

is the set of all x 2 B

r

su
h that �
r < x

3

< 
r; the map 	

1

whi
h takes D

r

\ B




r

into the 
ylinder E

r

� (0; 
r) is given by

	

1

(x

1

; x

2

; x

3

) :=

�

x

1

p

1� (x

3

=r)

2

;

x

2

p

1� (x

3

=r)

2

; x

3

�

:
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For r small enough, 	

1

takes the set 
\B




r

into a set of the form A :=

�

x 2 R

3

s.t. (x

1

; x

2

) 2 E

r

and f(x

1

; x

2

) < x

3

< 
r

	

, where f is a suitable real fun
tion of 
lass C

1

on E

r

and satis�es

f(0) = 0, Df(0) = 0, jDf j � 


2

on E

r

. The map 	

2

whi
h takes the 
ylinder E

r

� (0; 
) into A

is given by

	

2

(x

1

; x

2

; x

3

) :=

�

x

1

; x

2

; x

3

+

�

1�

x

3


r

�

2

f(x

1

; x

2

)

�

:

If I denote the identity map on R

3

, then kD	

1

� Ik = O(


2

) and kD	

2

� Ik = O(
); therefore

the map 	 := 	

�1

1

Æ	

2

Æ	

1

(extended to the identity in D

r

n B




r

) satis�es (a), is of 
lass C

1

on

D

r

and kD	� Ik = O(
).

4.3. Proof of Theorem 2.6, part I

Proof of statement (i)

Let be given a 
ountable sequen
e (u

"

) � H

1

(
) su
h that F

"

(u

"

) is bounded in ". Sin
e

F

"

(u

"

) � G

1

"

(u

"

;
) (see (2:12) and (4:3)), the sequen
e (u

"

) is pre-
ompa
t in L

1

(
) by statement

(i) of Theorem 4.2.

We have to prove that the sequen
e of the tra
es (Tu

"

) is pre-
ompa
t in L

1

(�
). In view

of Proposition 4.10 we 
an 
over �
 with �nitely many balls B

i


entered on �
 so that 
 \B

i

is

the image of an half-ball under a map 	

i

with isometry defe
t smaller than 1. Hen
e it suÆ
es to

show that the sequen
e (Tu

"

) is pre-
ompa
t in L

1

(�
 \ B

i

) for every i.

For every �xed i, let �u

"

:= u

"

Æ 	

i

. Sin
e the isometry defe
t of 	

i

is smaller than 1,

Proposition 4.9 implies that F

"

(�u

"

; D

r

; E

r

) is bounded. Hen
e the pre-
ompa
tness of the tra
es

Tu

"

in L

1

(�
 \B

i

) is implied by the pre-
ompa
tness of the tra
es T �u

"

in L

1

(E

r

), whi
h in turn

follows from Proposition 4.7.

Proof of statement (ii)

Let be given a sequen
e (u

"

) � H

1

(
) su
h that u

"

! u 2 BV (
; I) in L

1

(
) and Tu

"

! v 2

BV (�
; I

0

) in L

1

(�
). We have to show that

lim inf

"!0

F

"

(u

"

) � �(u; v) : (4:25)

Clearly we 
an assume that the liminf at the left hand side of (4:25) is �nite.

For every " > 0 let �

"

be the energy distribution asso
iated with the 
on�guration u

"

, that is,

the positive measure whi
h for every Borel set B � R

3

is given by

�

"

(B) := "

Z


\B

jDu

"

j

2

+

1

"

Z


\B

W (u

"

) + �

"

Z

�
\B

V (Tu

"

) : (4:26)

Then the total mass k�

"

k of the measure �

"

is equal to F

"

(u

"

), and possibly passing to a subse-

quen
e we 
an assume that k�

"

k is bounded and that �

"


onverges in the sense of measures to

some �nite measure � on R

3

.

We also asso
iate to ea
h of the three terms in (2:13) whi
h give �(u; v) the energy distributions

�

1

, �

2

and �

3

de�ned by

�

1

(B) := �H

2

(Su \ B) ; �

2

(B) :=

Z

�
\B

�

�

H(Tu)�H(v)

�

�

; �

3

(B) := 
H

1

(Sv \ B) :

Thus �(u; v) is equal to k�

1

k+ k�

2

k+ k�

3

k, and sin
e the measures �

i

are mutually singular and

lim inf F

"

(u

"

) = lim inf k�

"

k � k�k, inequality (4:25) follows from

� � �

i

for i = 1; 2; 3. (4:27)
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We prove that � � �

1

by showing that �(B) � �

1

(B) for all sets B � R

3

su
h that B \ 
 is

a Lips
hitz domain and �(�B) = 0 (one readily 
he
ks that this 
lass is large enough to imply the

inequality �(B) � �

1

(B) for all Borel sets B). Indeed for su
h a B there holds

�(B) = lim

"!0

�

"

(B) � lim inf

"!0

G

1

"

(u

"

; B \ 
) � �H

2

(Su \ B) = �

1

(B) ;

where �rst equality follows from the assumption �(�B) = 0, the �rst inequality follows from (4:26)

and (4:3), and the se
ond one by statement (ii) of Theorem 4.2 with A := B \ 
.

We prove that � � �

2

in the same way: taken B as before we get

�(B) � lim inf

"!0

G

1

"

(u

"

; B \ 
) �

Z

�
\B

�

�

H(Tu)�H(v)

�

�

= �

2

(B)

(apply statement (ii) of Proposition 4.3 with A := B \ 
 and A

0

:= B \ �
).

The inequality � � �

3

requires a di�erent argument. Sin
e �

3

is the restri
tion of H

1

to the

re
ti�able set Sv multiplied by the fa
tor 
, the following density estimate will suÆ
e:

lim

r!0

�(B

r

(x))

2r

� 
 for H

1

-a.e. x 2 Sv. (4:28)

The limit at the left hand side of (4:28) is the one-dimensional density of the measure � at x.

Sin
e Sv is one-re
ti�able, this density exists and agrees with the Radon-Nykodim derivative of

the measure � with respe
t to �

3

for H

1

-a.e. x 2 Sv.

In fa
t we prove (4:28) for every point x in Sv su
h that the limit at left hand side of (4:28)

exists, the set Sv has 1-dimensional density equal to one, and the unit normal �

v

is approximately


ontinuous at x (noti
e that these three 
onditions are veri�ed for H

1

-a.e. x 2 Sv).

We �x su
h a point x. For r suÆ
iently small we 
hoose a map 	

r

as in Proposition 4.10; we

assume moreover that �(�B

r

(x)) = 0 (this 
ondition is veri�ed by all r but 
ountably many).

We set �u

"

:= u

"

Æ	

r

and �v := v Æ	

r

. Hen
e T �u

"

! �v in L

1

(E

r

), v 2 BV (E

r

; I

0

) and

�(B

r

(x)) = lim

"!0

�

"

(B

r

(x)) = lim

"!0

F

"

�

u

"

;
 \ B

r

(x); �
 \B

r

(x)

�

�

�

1� Æ(	

r

)

�

5

lim inf

"!0

F

"

(�u

"

; D

r

; E

r

)

�

�

1� Æ(	

r

)

�

5




�

�

�

Z

S�v\E

r

�

�v

�

�

�

; (4:29)

where the �rst inequality follows from (4:23) and the se
ond from (4:16).

Noti
e that Sv\B

r

(x) = 	

r

(S�v\E

r

), and �

v

�

	

r

(y)

�

= D	

r

(y) ��

�v

(y) for a.e. y 2 S�v; taking

into a

ount that kD	

r

� Ik � Æ

r

and Æ(	

r

) � Æ

r

where Æ

r

vanishes as r ! 0 (
f. Proposition

4.10), and the 
hoi
e of the point x, one 
an easily prove that

�

�

�

Z

S�v\E

r

�

�v

�

�

�

= 2r + o(r) : (4:30)

Inequality (4:28) follows from (4:29) and (4:30).

4.4. Proof of Theorem 2.6, part II

We need the following extension result.
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Lemma 4.11. Let be given a domain A � R

3

and a real number m � j�j; j�j. Take " 2℄0; 1℄, a set

A

0

� �A, and a Lips
hitz fun
tion v : A

0

! [�m;m℄. Then v admits an extension u : A! [�m;m℄

su
h that Lip(u) � 1="+ Lip(v) and

G

1

"

(u;A) �

�

("Lip(v) + 1)

2

+ C

� �

j�Aj+ o(1)

�

� ; (4:31)

where C is the supremum of W on the interval [�m;m℄, the error o(1) is a fun
tion of " whi
h

depends only on the 
hoi
e of A and m (and not on v), and � is the in�mum between kv � �k

1

and kv � �k

1

.

Proof. Sin
e we 
an extend v to the rest of �A without in
reasing its Lips
hitz 
onstant, we assume

from the beginning that A

0

= �A. We also assume that � := kv � �k

1

(the other 
ase is similar).

Let U

t

be the set of all x 2 A su
h that 0 < dist (x; �A) < t. We set u := v on �A and u = �

on AnU

"�

. Then u is (Lip(v)+1=")-Lips
hitz on AnU

�"

, and we extend it to the rest of A without

in
reasing its Lips
hitz 
onstant. Then

G

1

"

(u;A) =

Z

U

"�

"jDuj

2

+

1

"

W (u) �

�

("Lip(v) + 1)

2

+ C

�

jU

"�

j

"

: (4:32)

Finally it is enough to noti
e that jU

t

j = t j�Aj+ o(t) be
ause �A is Lips
hitz.

Statement (iii) of Theorem 2.6 is a dire
t 
orollary of the following approximation result.

Lemma 4.12. Let be given u 2 BV (
; I) and v 2 BV (�
; I

0

) so that Su and Sv are 
losed

manifolds of 
lass C

2

without boundary respe
tively in 
 and �
. Then for every � > 0 and every

" > 0 we 
an �nd u

"

2 H

1

(
) su
h that

lim sup

"!0

ku

"

� uk

L

1

(
)

� � and lim sup

"!0

kTu

"

� vk

L

1

(�
)

� � ; (4:33)

lim sup

"!0

F

"

(u

"

) � �H

2

(Su) +

Z

�


�

�

H(Tu)�H(v)

�

�

+ 
H

1

(Sv) + � : (4:34)

Proof. Possibly modifying u and v in a negligible subset we 
an assume that they are 
onstant in

ea
h 
onne
ted 
omponent of 
 n Su and �
 n Sv respe
tively.

Let us �x some notation. We 
hoose a number m su
h that �m � �; �; �

0

; �

0

� m and all

the fun
tions we 
onsider in this proof will take values in [�m;m℄. We �x a 
onstant C > 2m

whi
h is larger than the 
onstant C in Lemma 4.11, and of the suprema of

p

W , W and V on the

interval [�m;m℄. In parti
ular C is larger than the 
onstants in statement (iii) of Theorem 4.2 and

statement (ii) of Proposition 4.3. For every x 2 
 we set d(x) := dist (x; �
), while d

0

: �
 ! R

is the oriented distan
e from Sv de�ned by

d

0

(x) :=

�

dist (x; Sv) if x 2 fv = �

0

g,

�dist (x; Sv) if x 2 fv = �

0

g.

Sin
e Sv is a boundary in �
, the interse
tion of a tubular neighborhoud of Sv and 
 is di�eo-

morphi
 to the produ
t of Sv and an half-disk. Su
h di�eomorphism 	 
an be 
onstru
ted as

follows: given x 2 
, let x

0

be the proje
tion of x on �
, let x

00

be the proje
tion of x

0

on Sv, and

set 	(x) :=

�

x

00

; d

0

(x

0

); d(x)

�

2 Sv � R � [0;+1[. Using the tubular neighborhoud theorem one


an show that the map 	 is well-de�ned and is a di�eomorphism of 
lass C

2

on 
 \ U for some

neighborhoud U of Sv (here we use the fa
t that �
 and Sv are of 
lass C

2

). Moreover 	 takes


 \ U into Sv � R�℄0;+1[ and �
 \ U into Sv � R � f0g, and for every x 2 �
, 	(x) = x and

D	(x) is an isometry.
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Let A

r

be the set of all x 2 
 su
h that dist (x; Sv) < r. Sin
e D	 is 
ontinuous, we dedu
e

that the isometry defe
t Æ

r

of the restri
tion of 	 to the A

r

satis�es

lim

r!0

Æ

r

= 0 : (4:35)

We denote by S

r

the set of all x 2 
 su
h that d(x) = r, and we �x now r > 0 so that

(a) S

r

and S

2r

are Lips
hitz surfa
es,

(b) Su \S

r

is a Lips
hitz 
urve (not ne
essarily 
onne
ted),

(
) the set A

r

is in
luded in U .

Noti
e that (a) and (
) are veri�ed by every r suÆ
iently small, while (b) is veri�ed by a.e. r

suÆ
iently small (apply Sard's theorem to the fun
tion d on the surfa
e Su). We 
onstru
t now a

partition of 
:

B

1

:=

�

x 2 
 : dist

�

x; Sv [ (Su \S

r

)

�

< 3r

	

,

A

1

:=

�

x 2 
 nB

1

: d(x) < r

	

,

B

2

:=

�

x 2 
 nB

1

: r < d(x) < 2r

	

,

A

2

:=

�

x 2 
 nB

1

: 2r < d(x)

	

,

 A1

 B1

 B2

 ∂Ω
 A2 A2

 Sv

 Su ∩ S r
 Su

 v=α'

 v=β'

 u=β u=α

 v=α'

 v=β'

Figure 6: the partition of 
.

For every " < r we 
onstru
t the Lips
hitz fun
tion u

"

in four steps: �rst we de�ne it on A

2

and A

1

, and then on B

2

and B

1

.

On the set A

2

we take u

"

as in the se
ond part of statement (iii) of Theorem 4.2 (with A

repla
ed by A

2

) and we extend it to �A

2

by 
ontinuity. Hen
e u

"

is (C=")-Lips
hitz on A

2

, it


onverges to u pointwise on A

2

and uniformly on �A

2

\ �B

2

, and

F

"

(u

"

; A

2

;�) = G

1

"

(u

"

; A

2

) � �H

2

(Su \ A

2

) + o(1) � �H

2

(Su) + o(1) : (4:36)

The fun
tion u is 
onstant (equal to � or �) on every 
onne
ted 
omponent A of A

1

, while v

is 
onstant (equal to �

0

or �

0

) on �A \ �
 (
f. �gure 6); thus we take u

"

as in statement (ii) of

Proposition 4.3 (with A

0

repla
ed by �A \ �
) and we extend it to �A

1

by 
ontinuity. Sin
e the

distan
e between two di�erent 
onne
ted 
omponents of A

1

is larger than r and C=" > 2m=r, then

u

"

is (C=")-Lips
hitz on A

1

and agrees with v on �A

1

\ �
. Moreover it 
onverges to u pointwise

on A

1

and uniformly on �A

1

\ �B

2

, and satis�es

F

"

(u

"

; A

1

; �A

1

\ �
) = G

1

"

(u

"

; A

1

) �

Z

�


�

�

H(Tu

"

)�H(v)

�

�

+ o(1) : (4:37)

Sin
e the distan
e between A

1

and A

2

is equal to r and C=" � 2m=r, then u

"

is (C=")-Lips
hitz

also on A

1

[A

2

. Then we 
an apply Lemma 4.11 to ea
h 
onne
ted 
omponent B of B

2

to extend

the fun
tion u

"

, whi
h is de�ned only on (�A

1

[ �A

2

) \ �B, to the rest of B; sin
e u is 
onstant
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(equal to � or �) on ea
h 
onne
ted 
omponent of B

1

, if we denote by �

"

the in�mum of ju

"

� uj

on (�A

1

[ �A

2

) \ �B

1

, then �

"

= o(1) and (4:31) yields

F

"

(u

"

; B

2

;�) = G

1

"

(u

"

; B

2

) �

�

(1 + C)

2

+ C

� �

j�B

2

j+ o(1)

�

�

"

= o(1) : (4:38)

Moreover u

"

is (2C=")-Lips
hitz on B

2

.

It remains to 
onstru
t u

"

on B

1

. This last step is slightly more elaborated than the previous

ones. First of all we de�ne a fun
tion w

"

: R � [0;+1[! [�m;m℄ as follows: in polar 
oordinates

� 2 [0; �℄, � 2 [0;+1℄,

w

"

(�; �) :=

8

<

:

(��

"

=") (��

0

+ (1� �)�

0

) + (1� ��

"

=")

�

0

+�

0

2

if 0 � � < "=�

"

,

��

0

+ (1� �)�

0

if "=�

"

� �.

For every t > 0 let D

t

be the half-disk of all y 2 R�℄0;+1[ su
h that jyj < t, and let E

t

be the

segment of all y 2 R � f0g su
h that jyj < t. A dire
t 
omputation gives

Z

D

1

jDw

"

j

2

=

(�

0

� �

0

)

2

�

log(�

"

=") +O(1) : (4:39)

We set �w

"

(x; y) := w

"

(y) for every x 2 Sv and y 2 R � [0;+1[, and using (4:39) we obtain

F

"

( �w

"

; Sv �D

2"

; Sv �E

2"

) =

=H

1

(Sv) �

h

"

Z

D

2"

jDw

"

j

2

+

1

"

Z

D

2"

W (w

"

) + �

"

Z

E

"=�

"

V (w

"

)

i

�H

1

(Sv) �

h

(�

0

� �

0

)

2

�

" log(�

"

=") + 2�"C + 2"C

i

= 
H

1

(Sv) + o(1) : (4:40)

We de�ne u

"

on the set A

"

by u

"

:= �w

"

Æ	, where 	 and A

"

are given at the beginning of this

proof. Sin
e the isometry defe
t of 	 on A

"

tends to 0 as " ! 0 (
f. (4:35)), for " small enough

the fun
tion 	 is 2-Lips
hitz (see De�nition 4.8 and subsequent remarks), and then 	 takes A

"

into Sv �D

2"

and �A

"

\ �
 into Sv �E

2"

. Then (4:40) and Proposition 4.9 yield

(1� Æ

"

)

5

F

"

(u

"

; A

"

; �A

"

\ �
) � F

"

( �w

"

; Sv �D

2"

; Sv �E

2"

) � 
H

1

(Sv) + o(1) : (4:41)

We extend u

"

by setting u

"

:= v in the rest of �B

1

\ �
; then u

"

= v on �
 n �A

"

. Now u

"

is

de�ned on the whole boundary of B

1

nA

"

and is (2C=")-Lips
hitz. Hen
e we 
an use Lemma 4.11

to extend u

"

to B

1

nA

"

, and inequality (4:32) yields

F

"

�

u

"

; B

1

nA

"

; �(B

1

nA

"

) \ �


�

= G

1

"

�

u

"

; B

1

nA

"

�

�

�

(1 + 2C)

2

+ C

�

jU

"�

j

"

; (4:42)

where � is the in�mum of ku

"

� �k and ku

"

� �k, and U

"�

is the set of all x 2 B

1

n A

"

su
h that

dist (x; �(B

1

nA

"

)) � �". Sin
e � � 2m and jU

"�

j = "� j�B

1

j+ o("�), (4:42) be
omes

F

"

�

u

"

; B

1

nA

"

; �(B

1

nA

"

) \ �


�

� C

0

j�B

1

j+ o(1) ; (4:43)

where C

0

:= (1 + 2C)

2

+ C.

The fun
tion u

"

is now de�ned on the whole of 
 and is Lips
hitz. Putting together inequalities

(4:36), (4:37), (4:38), (4:41) and (4:43) we �nally obtain

lim sup

"!0

F

"

(u

"

) � �H

2

(Su) +

Z

�


�

�

H(Tu)�H(v)

�

�

+ 
H

1

(Sv) + C

0

j�B

1

j : (4:44)
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Moreover u

"

! u pointwise on A

1

and A

2

, and u

"

= v on �
 n �A

"

, and then

lim sup

"!0

ku

"

� uk

L

1

(
)

� 2m

�

jB

1

j+ jB

2

j

�

and lim

"!0

kTu

"

� vk

L

1

(�
)

= 0 : (4:45)

Noti
e that j�B

1

j, jB

1

j and jB

2

j have order r, r

2

and r respe
tively, then taking r small enough

we dedu
e (4:34) and (4:33) from (4:44) and (4:45).

Proof of statement (iii) of Theorem 2.6

We �rst remark that every pair (u; v) 2 BV (
; I) � BV (�
; I

0

) 
an be approximated in

L

1

(
)�L

1

(�
) by a sequen
e (u

n

; v

n

) whi
h ful�ll the regularity assumptions of Lemma 4.12 and

satis�es H

2

(Su

n

) ! H

2

(Su) and H

1

(Sv

n

) ! H

1

(Sv) (see for instan
e [Gi℄, Theorem 1.24).

Therefore �(u

n

; v

n

) ! �(u; v). To 
on
lude the proof of statement (iii) of Theorem 2.6, we just

need to apply Lemma 4.12 to ea
h pair (u

n

; v

n

) and then apply a suitable diagonal argument.

5. Appli
ation to 
apillary equilibrium with line tension

In this se
tion we des
ribe some me
hani
al features of the equilibrium 
on�gurations asso-


iated with the relaxation F

0

of the energy F

0

(see subse
tion 2.2) or with the limit energy F

obtained in subse
tion 2.3. We follow the notation of subse
tions 2.2 and 2.4.

We re
all that F

0

and F are given in term of �

0

and � (see (2:6), (2:16)), whi
h in turn 
an

be viewed as spe
ial 
ases of the more general energy �

gen

given in (2:19) (following subse
tion

2.4, here we view F as a fun
tion of A 2 X instead of u 2 BV (
; I), and � as a fun
tion of

(A;A

0

) 2 X �X

0

instead of (u; v) 2 BV (
; I)�BV (�
; I

0

)).

The fun
tional �

gen

depends on the bulk phase A and the boundary phase A

0

(whi
h determine

respe
tively the other bulk phase B and the other boundary phase B

0

). A 
on�guration A 2 X

is at equilibrium with respe
t to F

0

(resp. F ) under the volume 
onstraint jAj = v if and only if

there exists A

0

2 X

0

su
h that (A;A

0

) is an equilibrium 
on�guration for �

0

(resp. �).

In subse
tion 5.1 we brie
y des
ribe the equilibrium 
onditions for a 
on�guration (A;A

0

) with

respe
t to the energy �

gen

; in parti
ular we noti
e that, at equilibrium, the 
onta
t angle � satis�es

a di�erent 
ondition than the usual Young's law (pres
ribed by the 
apillary energy E

0

in (1:1)).

This modi�
ation depends heavily whether the 
onta
t line L




and the dividing line L

A

0

B

0


oin
ide

or not. In subse
tion 5.2 we exhibit examples where L




and L

A

0

B

0


oin
ide and examples where

they do not.

5.1. Equilibrium 
onditions for the energy �

gen

The general model �

gen

is 
hara
terized by the 
oeÆ
ients �

AB

, �

AA

0

, �

AB

0

, �

BA

0

, �

BB

0

and


; we assume that the generalized wetting 
onditions (2:24) are veri�ed. A 
on�guration (A;A

0

)

is in equilibrium if it minimizes �

gen

under the volume 
onstraint jAj = v for some v su
h that

0 < v < j
j, that is, if it solves the problem

min

A2X;jAj=v

A

0

2X

0

n

�

AB

jS

AB

j+ �

AA

0

jS

AA

0

j+ �

AB

0

jS

AB

0

j+

+ �

BA

0

jS

BA

0

j+ �

BB

0

jS

BB

0

j+ 
jL

A

0

B

0

j

o

:

(5:1)

We just re
all here that sin
e �

gen

is lower semi
ontinuous on X�X

0

(Theorem 2.9), then the

minimum problem (5:1) admits a solution (A;A

0

) where A and A

0

have �nite perimeter (respe
tively

in 
 and �
). By standard regularity results for sets with minimal perimeter in dimension 3 and

2 (see for instan
e [Ta℄, [Amb2℄), the essential boundary of A in 
, that is, the interfa
e S

AB

, is
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a 
losed analyti
 surfa
e with 
onstant mean 
urvature, while the essential boundary of A

0

in �
,

that is L

A

0

B

0

, is a 
losed 
urve of 
lass C

1;1

.

For the rest of this se
tion we assume that all the obje
ts we 
onsider are suÆ
iently smooth,

and all statements are given without rigorous proofs. Let us re
all the geometri
al parameters of

the problem. Given a 
on�guration (A;A

0

), the 
onta
t line L




is the 
urve determined by the

interse
tion of the interfa
e S

AB

= �A with the boundary of 
, the 
onta
t angle � is de�ned at

every point of L




as the angle between the outward normal �




to �
 and the outward normal

to S

AB

(viewed as a part of the boundary of A); the dividing line L

A

0

B

0

is the boundary of A

0

,

and at every point x 2 L

A

0

B

0

we denote by K

g

(x) the s
alar produ
t of the outward 
o-normal

versor of �A

0

(denoted �

A

0

) by the mean 
urvature ve
tor of L

A

0

B

0

; in other words the real number

K

g

(x) represents the signed geodesi
 
urvature of L

A

0

B

0

, oriented by the tangent ve
tor t so that

the Darboux system (t; �

A

0

; �




) is dire
t.

 θ
dividing line  L A'B'

contact line  L c

 phase A

boundary phase A'
boundary phase B'

 phase A  phase B

Figure 7: an example of equilibrium 
on�guration

We de�ne now the angles �

1

; �

2

2 [0; �℄, the dimensionless parameter � and the 
hara
teristi


length ` as follows:


os(�

1

) :=

�

AA

0

� �

BA

0

�

AB

; 
os(�

2

) :=

�

AB

0

� �

BB

0

�

AB

;

� :=

�

BB

0

+ �

AB

0

� �

AA

0

� �

BA

0

�

AB

; ` :=




�

AB

:

(5:2)

In the following we assume that �

1

� �

2

, the other 
ase being similar.

Let (A;A

0

) be an equilibrium 
on�guration for �

gen

, that is, a solution of (5:1). Then the mean


urvature of the interfa
e S

AB

is 
onstant, moreover we 
an derive some equilibrium 
onditions for

K

g

and �. More pre
isely, the 
onta
t angle � veri�es

� =

�

�

1

on (L




nL

A

0

B

0

) \ A

0

,

�

2

on (L




nL

A

0

B

0

) \ B

0

,

� 2 [�

2

; �

1

℄ on L




\L

A

0

B

0

,

(5:3)

while the geodesi
 
urvature K

g

veri�es

�2`K

g

=

(

� � 
os �

1

+ 
os �

2

on (L

A

0

B

0

nL




) \S

AW

,

� + 
os �

1

� 
os �

2

on (L

A

0

B

0

nL




) \S

BW

,

� � 
os �

1

� 
os �

2

+ 2 
os � on L

A

0

B

0

\L




(5:4)

(we do not pre
ise here in whi
h weak sense the 
urvature must be intended; 
learly (5:3) and (5:4)

will hold in the 
lassi
al sense up to few ex
eptional points).

Both equilibrium 
onditions (5:3) and (5:4) 
an be easily interpreted in term of for
es. Noti
e

that the �rst two lines in (5:3) are a restatement of Young's law (
f. (1:3) and (5:2)), while the �rst
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two lines in (5:4) are the usual 
onstant mean 
urvature 
ondition for the minimizers of fun
tionals

of the type aj�Ej+ bjEj E � �
 with E � �
, that is a Young's law on the manifold �
. In the

interese
tion of L




and L

A

0

B

0

, the balan
e between for
es due to surfa
e tension, line tension and

boundary adhesion leads to the relation between � and K

g

stated in the last line of (5:4).

We remark that the dividing line L

A

0

B

0

may be empty, namely when A

0

(resp. B

0

) is empty; in

this 
ase 
ondition (5:4) disappears and eventually (5:3) redu
es to the usual Young's law � = �

2

(resp. � = �

1

) on L




.

Both (5:3) and (5:4) depends only on the four independent parameters �

1

, �

2

, � and ` whi
h

determine the equilibrium 
on�gurations of �

gen

. This is in a

ordan
e with subse
tion 2.4, where

we 
laimed that the model asso
iated with �

gen

has indeed four degrees of freedom.

5.2. An example: a bubble growing in a 
ylinder

In this subse
tion we give some expli
it examples of equilibrium 
on�gurations. We restri
t

our attention to the parti
ular 
ase

�

AA

0

= �

BB

0

= 0 ; �

AB

0

= �

BA

0

= �

AB

= � : (5:5)

Then �

1

= �, �

2

= 0, � = 0, and the only free parameter left is ` := 
=� (
f. (5:2)). The expression

of �

gen

be
omes

�

gen

(A;A

0

) = �

�

jS

AB

j+ jS

AB

0

j+ jS

BA

0

j+ `jL

A

0

B

0

j

�

: (5:6)

Noti
e that (5:5) implies (2:22), and therefore �

gen

is a parti
ular 
ase of �

0

(
orresponding

to the relaxation of F

0

when �

AW

= �

BW

= 0) or of � (when the wells of V and W satisfy

� = �

0

< � = �

0

).

We 
onsider now the (limit) 
ase where the 
ontainer 
 is an in�nite 
ylinder of radius r and

the volume of the phase A is a �nite number v, and we study the behaviour of the equilibrium


on�gurations as v in
reases from 0 to +1. Under the additional assumption that r � `=2, we

obtain in fa
t a 
omplete des
ription of the equilibrium 
on�gurations for every value of v.

Proposition 5.1. Assume that r � `=2 and let v

1

:= 4�r

3

=3 and v

2

:= �r

2

(r=3 + 2`) (hen
e

v

1

� v

2

). Then the equilibrium 
on�gurations (A;A

0

) are given as follows:

(i) when v � v

1

, A is any sphere with radius � :=

�

3v

4�

�

1=3

, A

0

is empty, and the total energy is

given by

E := 4��

2

� = (36�)

1=3

� v

2=3

; (5:7)

(ii) when v

1

< v < v

2

, A is the union of two half-spheres of radius r and a 
ylinder of radius r

and heigth d (see �gure 8 below) where d :=

v�v

1

�r

2

, A

0

is empty, and the total energy is

E := �(4�r

2

+ 2�rd) = �

�

4�r

2

3

+

2v

r

�

; (5:8)

(iii) when v � v

2

, A is a 
ylinder of radius r and heigth �

�1

r

�2

v and A

0

agrees with the interfa
e

S

AW

(see �gure 9 below); the total energy is

E := �(2�r

2

+ 4�r`) : (5:9)
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 phase B

 boundary phase B'

 contact line L c

 no boundary phase A'

 no dividing line L A'B'

r
 phase B

 phase A

d

Figure 8: equilibrium 
on�guration for v

1

< v < v

2

.

 phase B

 boundary phase B'

 contact line L   = dividing line Lc A'B'

 boundary phase B' boundary phase A'

 phase B phase A

Figure 9: equilibrium 
on�guration for v

2

� v.

The result of Proposition 5.1 
an be interpreted as follows: for v smaller than the 
riti
al

volume v

2

, the minimal energy is a
hieved when A

0

is empty; this means that the dividing line

L

A

0

B

0

is empty no line tension appears. When v is smaller than v

1

, A is a spheri
al bubble whi
h

tou
hes the wall of the 
ontainer in at most one point (and the 
onta
t line is empty); when v

rea
hes the value v

1

the sphere A be
omes tangent to the 
ylinder (on a 
ir
le) and then it grows as

shown in �gure 8. In the intermediate range v

1

< v < v

2

, the 
onta
t line L





onsists of two 
ir
les

(delimiting the part of the wall 
orresponding to S

AW

) and the 
onta
t angle � is everywhere equal

to �

2

= 0. When v passes the 
riti
al value v

0

we have a sudden 
hange: the boundary phase

A

0

appears and agrees with the interfa
e S

AW

; the 
onta
t line L




and the dividing line L

A

0

B

0


oin
ide and have vanishing geodesi
 
urvature K

g

(x). Then (5:4) shows that the 
onta
t angle �

is equal to

�

2

.

In other words, if we 
onsider the quasistati
 evolution of the system when the volume v

of phase A in
reases 
ontinuously from 0 to +1, the bubble will experien
e a dis
ontinuity in �

(from � = 0 to � =

�

2

) when v rea
hes the 
iti
al value v

2

. This example shows that for a good

understanding of this model of 
apillarity with line tension it is 
ru
ial to admit boundary phases

whi
h may not agree with the interfa
es between the bulk phases and the wall.

Remark 5.2. In the previous example we have assumed 
ondition (5:5) only to provide expli
it


omputations. Another interesting situation is obtained when the 
ontainer 
 is an a half-spa
e

and the 
oeÆ
ients of �

gen

satisfy, instead of (5:5),

�

AA

0

= �

BB

0

= 0 ; 0 < �

AB

0

= �

BA

0

= �

0

< �

AB

= � :

In this 
ase the angle �

2

lies in interval (0;

�

2

), �

1

= � � �

2

, and � = 0 (see (5:2)).

Under these assumptions we expe
t the following pi
ture (whi
h has been partially 
on�rmed

by numeri
al 
omputations): when the volume v of the phase A is small, the optimal 
on�guration

is obtainbed when A

0

is empty and the interfa
e S

AB

is a spheri
al surfa
e whi
h meets the wall
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�
 with 
onstant 
onta
t angle � = �

2

; in this regime A grows homoteti
ally with v, the dividing

line is empty and there is no line tension.

When v is larger than a 
ertain 
riti
al value v

0

, the optimal 
on�guration is obtained when

A

0

agrees with S

AW

and S

AB

is a spheri
al surfa
e whi
h meets �
 with 
onstant 
onta
t angle

� 2 (�

2

;

�

2

). When v passes v

0

the 
onta
t angle � in
rease dis
ontinuosly from �

2

to a 
ertain

�

0

2 (�

2

;

�

2

); also the radius of the disk S

AB

admits a dis
ontinuity at v = v

0

. In the regime v > v

0

the dividing line agrees with the 
onta
t line, the radius of the disk S

AB

in
reases with v, while the

relative 
ontribution of line tension to the total energy de
reases, and the 
onta
t angle in
reases

to �=2 as v !1.

Sket
h of the proof of Proposition 5.1.

Sin
e L

A

0

B

0

= �A

0

, S

AB

= �A \ 
, S

AB

0

= �A n A

0

, S

BA

0

= A

0

n �A, and ` = 
=�, we 
an

rewrite the fun
tional �

gen

in (5:6) as

�

gen

(A;A

0

) = �

�

j�A4A

0

j+ `j�A

0

j

�

: (5:10)

We 
onsider now a minimizer (A;A

0

) of �

gen

under the 
onstraint jAj = v.

Step 1: if A

0

is empty, then A is a sphere as long as v � v

1

= 4�r

3

=3, and otherwise is given as

in �gure 8; the 
orresponding energies are given by (5:7) and (5:8) respe
tively.

If A

0

is empty then A minimizes �j�Aj under the volume 
onstraint jAj = v (
f. (5:10)). Then

A must be a sphere as long as a sphere of volume v is 
ontained in 
, that is, for v � 4�r

3

=3.

For larger v, we 
an easily prove that A is axially symmetri
 (by a standard appli
ation of Steiner

symmetrization), �A has 
onstant mean 
urvature in 
 and meets �
 with 
onstant 
onta
t angle

� = 0 (
f. (5:3)). The only possibility is the one in �gure 8.

Step 2: if A

0

is not empty, then j�A

0

j � 4�r.

We assume �rst that �A

0


onsists of one 
onne
ted 
omponent 
 only. Sin
e the 
losed 
urve


 is a boundary within �
, it is homotopi
ally trivial. Now the Gaussian 
urvature of �
 vanishes

and by the theorem of Gauss-Bonnet, the integral over 
 of the modulus of the geodesi
 
urvature

K

g

(x) is exa
tly 2�. But we know from (5:4) that jK

g

(x)j � 1=` (re
all that � = 0). Then 
 has

length at least 2�`, and the thesis follows by the assumption r � `=2.

Clearly this argument runs also if we assume that �A

0


ontains at least one homotopi
ally

trivial 
onne
ted 
omponent. In all other 
ases, �A

0


ontains at least two 
losed 
urves whi
h wind

around the 
ylinder and therefore we have again j�A

0

j � 4�r.

Step 3: if A

0

is not empty then v > �

2

r

3

.

By Step 2 we know that j�A

0

j � 4�r, and then the energy of the 
on�guration (A;A

0

) is at

least 4�r`�, whi
h is stri
tly larger than (5:7) and (5:8) if v � �

2

r

3

; by Step 1 we dedu
e that

(A;A

0

) 
annot be a minimizer for v � �

2

r

3

.

Step 4: if A

0

is not empty then A is given as in �gure 9, and the energy is given in (5:9).

By Step 2 we know that j�A

0

j � 4�r and by Step 3 that jAj > �

2

r

3

. Then Proposition 6.10

yields j�A \ 
j � 2�r

2

and therefore the total energy is larger than �(2�r

2

+ 4�r`). On the other

hand this lower bound is a
hieved by the 
on�guration des
ribed in �gure 9 only.

To 
on
lude the proof, it is enough to noti
e that the 
on�guration in �gure 9 is preferable to

the one in �gure 8 only when v is larger than v

2

= �r

2

(r=3 + 2`) (just 
ompare the values of the

energy in (5:8) and (5:9)).

6. Appendix
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We give here some te
hni
al lemmas we used in the previous se
tions.

6.1. A rearrengement result

Let  be a positive de
reasing fun
tion on [0;+1[. For every 
ouple of Borel sets A and B in

R we set

	(A;B) :=

Z

A�B

 (jx

0

� xj) dx

0

dx : (6:1)

Now, for every t; y 2 R, we denote by L

t

(A) the interval [t; t + jAj℄ and by R

y

(B) the interval

[y� jBj; y℄. The following result 
an be found in [ABS1℄ (see also [Br℄); for the 
onvenien
e of the

reader we give also the proof.

Proposition 6.1. If A and B are disjoint sets in
luded in the interval [t; y℄, then

	(A;B) � 	

�

L

t

(A); R

y

(B)

�

: (6:2)

In other words, if we �x an interval I and restri
t our attention to the 
lass of all A;B � I

with pres
ribed measures a and b (with a + b � jI j), then the in�mum of 	 is a
hieved when A

and B are intervals and are taken as mu
h distant as possible.

Proof. We write A � B if supA � inf B. We remark that if t � A � B � y then

	(A;B) � 	(L

t

(A); B) and 	(A;B) � 	(A;R

y

(B)) : (6:3)

Indeed, by setting h(x) := t +

R

x

t

1

A

(s) ds, we have that h(x) � x for all x � t, and sin
e  is

de
reasing we get

	(A;B) =

Z

B

h

Z

+1

t

 (x

0

� x) 1

A

(x) dx

i

dx

0

�

Z

B

h

Z

+1

t

 (x

0

� h(x))h

0

(x) dx

i

dx

0

=

Z

B

h

Z

t+a

t

 (x

0

� u) du

i

dx

0

= 	(L

t

(A); B) :

This proves the �rst inequality in (6:3). The se
ond one may be proved in the same way.

Next we observe that it suÆ
es to prove inequality (6:2) when A and B are �nite unions of


losed intervals, the general 
ase will follow by a standard approximation argument. Let A =

A

1

[A

2

[ : : :[A

n

A

, B = B

1

[B

2

[ : : :[B

n

B

, where A

i

and B

j

are pairwise disjoint 
losed intervals

in [t; y℄.

The proof is a
hieved by indu
tion on the total number of intervals n = n

A

+ n

B

. When

n = 1, either A or B is empty and the proposition is trivial. Now, we assume the proposition true

for n and we prove it for n+ 1.

Let be given A and B su
h that n

A

+ n

B

= n + 1. With no loss in generality we may

assume that A is non-empty and A

1

� A

i

for all i > 1 and A

1

� B; we set 
 := jA

1

j and

A

0

:= A

2

[ A

3

[ : : : [ A

n

A

. Then we may write 	(A;B) as 	(A

1

; B) + 	(A

0

; B), and sin
e

t � A

1

� B � y, inequalities (6:3) yield

	(A

1

; B) � 	

�

L

t

(A

1

); B

�

� 	

�

L

t

(A

1

); R

y

(B)

�

:

Moreover, A

0

and B are disjoint subsets of [t + 
; y℄ and n

A

0

+ n

B

= n; therefore the indu
tive

hypothesis yields

	(A

0

; B) � 	

�

L

t+


(A

0

); R

y

(B)

�

:
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Hen
e

	(A;B) � 	

�

L

t

(A

1

); R

y

(B)

�

+	

�

L

t+


(A

0

); R

y

(B)

�

and sin
e L

t

(A

1

) [ L

t+


(A

0

) = L

t

(A), we dedu
e (6:2).

6.2. Optimal 
onstants for some tra
e inequalities

The following three statements are 
on
erned with the optimal 
onstant for some tra
e in-

equalities involving the L

2

norm of the gradient of a fun
tion de�ned on a two-dimensional domain

and the H

1=2

norm of its tra
e on a line. For the time being u = u(x; y) is a real fun
tion on

R

2

, v = v(x) is the tra
e of u on the line R � f0g, û = û(�; �) is the Fourier Transform of u and

v̂ = v̂(�) is the Fourier Transform of v.

Lemma 6.2. Let u be a fun
tion in L

1

lo


(R

2

) with derivative in L

2

. Then u belongs to H

1

lo


(R

2

)

and the tra
e of u on the line R � f0g is a well-de�ned fun
tion v 2 L

2

lo


(R). Moreover

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx � �

Z

R

2

jDuj

2

dx dy : (6:4)

Proof. First we prove inequality (6:4) when u is a smooth fun
tion with 
ompa
t support by a

standard Fourier Transform argument (
f. [Ne℄, 
hapter 2, se
tion 5):

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx =

Z

R

h

Z

R

jv(x+ h)� v(x)j

2

dx

i

dh

h

2

=

Z

R

h

Z

R

�

�

v̂(�)(e

2�ih�

� 1)

�

�

2

d�

i

dh

h

2

=

Z

R

h

Z

R

2� 2 
os(2�h�)

h

2

dh

i

jv̂(�)j

2

d�

= 4�

2

Z

R

jv̂(�)j

2

j�j d�

(here the se
ond equality follows from Plan
herel Theorem and the identity d�

h

v(�) = e

2�ih�

v̂(�),

while the last equality follows from the identity

R

R

(2� 2 
os(2�h�))h

�2

dh = 4�

2

j�j).

Now we noti
e that v̂(�) =

R

R

û(�; �) d�, and then

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx = 4�

2

Z

R

h

Z

R

û(�; �)j�j

1=2

d�

i

2

d�

= 4�

2

Z

R

h

Z

R

�

û(�; �)(�

2

+ �

2

)

1=2

��

j�j

�

2

+ �

2

�

1=2

d�

i

2

d�

� 4�

2

Z

R

h

Z

R

jûj

2

(�

2

+ �

2

) d�

ih

Z

R

j�j

�

2

+ �

2

d�

i

d�

= 4�

3

Z

R

2

jûj

2

(�

2

+ �

2

) d� d�

= �

Z

R

2

jDuj

2

dx dy

(the inequality follows from S
hwartz-H�older inequality, while the last equality follows from

Plan
herel theorem and the identity




Du(�; �) = 2�i û(�; �) � (�; �)).

Now we want to extend inequality (6:4) to all fun
tions in the Beppo-Levi spa
e X :=

�

u 2

L

1

lo


(R

2

) : Du 2 L

2

	

. We re
all that X is Fr�e
het spa
e whose topology is generated by the L

1

lo


topology and the semi-norm kDuk

2

. We will use a density argument.
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Noti
e that the right hand side of inequality (6:4) is 
ontinuous on X (by the de�nition of

the topology of X), while the left hand side is lower semi
ontinuous in L

1

lo


, and then also in X ,

by the Fatou's Lemma. Hen
e it is enough to prove that the spa
e D(R

2

) of all smooth fun
tions

with 
ompa
t support is dense in X . Sin
e D(R

2

) is dense in H

1

(R

2

) and X \ L

1

is dense in X

(any u 2 X may be approximated by the trun
ated fun
tions u

n

:= (u ^ n) _ (�n)), it remains to

show that H

1

is dense in X \ L

1

(with respe
t to the X topology).

For every bounded fun
tion u in X and every integer n > 1 we set u

n

(x) := g

n

(x)u(x) where

g

n

(x) =

8

<

:

1 if jxj � n

1=e

,

log(logn)� log(log jxj) if n

1=e

� jxj � n,

0 if n � jxj.

Ea
h u

n

belongs to H

1

and u

n

tends to u in L

1

lo


. Moreover Du

n

= g

n

Du+uDg

n

, and uDg

n

! 0

in L

2

be
ause u is bounded and Dg

n

! 0 in L

2

(this 
an be 
he
ked by a dire
t 
omputation);

hen
e Du

n

! Du in L

2

, and thus we have proved that u

n

tends to u in X .

Corollary 6.3. Let A be the half-plane f(x; y) : y > 0g and let u be a fun
tion in L

1

lo


(A) su
h

that Du 2 L

2

. Then the tra
e v of u on R � f0g is well-de�ned and

Z

R

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx � 2�

Z

A

jDuj

2

dx dy : (6:5)

Proof. Extend the fun
tion u to the whole R

2

by re
e
tion and then apply Lemma 6.2.

Corollary 6.4. Let D be the half-disk

�

(x; y) : x

2

+ y

2

< r; y > 0

	

where r > 0, and let u be

a fun
tion in H

1

(
). Then the tra
e of u on the segment E � f0g (with E =℄ � r; r[) belongs to

H

1=2

(E) and

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx dx

0

� 2�

Z

D

jDuj

2

dx dy : (6:6)

Proof. We extend the fun
tion u to the whole half-plane A := f(x; y) : y > 0g by setting

~u(z) =

�

u(z) if jzj < r,

u(r

2

=�z) if jzj > r

(we identify the points (x; y) with the 
omplex numbers z = x+ iy). Sin
e z 7! r

2

=�z is a 
onformal

mapping, we have

R

AnD

jD~uj

2

=

R

D

jD~uj

2

=

R

D

jDuj

2

. ThusD~u belongs to L

2

(A) and by Corollary

6.3 we get

4�

Z

D

jDuj

2

= 2�

Z

A

jD~uj

2

�

Z

R

2

�

�

�

~v(x

0

)� ~v(x)

x

0

� x

�

�

�

2

dx

0

dx

�

Z

E

2

�

�

�

~v(x

0

)� ~v(x)

x

0

� x

�

�

�

2

dx

0

dx+

Z

(RnE)

2

�

�

�

~v(x

0

)� ~v(x)

x

0

� x

�

�

�

2

dx

0

dx

=

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx+

Z

E

2

�

�

�

v(x

0

)� v(x)

r=x

0

� r=x

�

�

�

2

r

4

(x

0

x)

2

dx

0

dx

= 2

Z

E

2

�

�

�

v(x

0

)� v(x)

x

0

� x

�

�

�

2

dx

0

dx :

Remark 6.5. The 
onstants in the tra
e inequalities (6:4), (6:5) and (6:6) are optimal. The proof

of this 
laim 
learly redu
es to prove that the 
onstant 2� in (6:6) is sharp. To this end we 
onsider

for every � > 1=r the fun
tions u

�

: D ! [0; 1℄ given in polar 
oordinates � 2℄0; �[, � 2℄0; r[ by

u

�

(�; �) :=

8

<

:

�

�

�� for 0 < � < 1=�,

1

�

� for 1=� < � < r.

(6:7)
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The tra
e of u

�

on E is the fun
tion v

�

(x) = 0 for x > 0 and v

�

(x) = 1 for x < 0. By a

straightforward 
omputation one gets

Z

E

2

�

�

�

v

�

(x

0

)� v

�

(x)

x

0

� x

�

�

�

2

dx dx

0

= 2 log�+O(1)

and

Z

D

jDu

�

j

2

dx dy =

1

�

log�+O(1) :

The 
on
lusion follows by letting �! +1.

6.3. Some sli
ing results

We establish now a 
onne
tion between the 
ompa
tness of a family of fun
tions in L

1

(R

h

) and

the 
ompa
tness of the tra
es of these fun
tions on lines. We �x L > 0 and we assume throughout

this subse
tion that every fun
tion takes values in the interval [�L;L℄.

Let us �x some notation: A is a bounded open subset of R

N

, e is a unit ve
tor in R

N

and

u a fun
tion on A; we denote by M the orthogonal 
omplement of e, by A

e

the proje
tion of A

onto M ; for every y 2 M , A

y

e

:= ft 2 R : y + te 2 Ag and u

y

e

is the tra
e of u on A

y

e

, that is,

u

y

e

(t) := u(y + te). A

ordingly, for every family F of fun
tions on A we set F

y

e

:= fu

y

e

: u 2 Fg,

so that F

y

e

is a familiy of fun
tions on A

y

e

.

The simplest statement whi
h 
onne
ts the pre-
ompa
tness of F in L

1

(A) with the pre-


ompa
tness of F

y

e

in L

1

(A

y

e

) is the following: assume that there exist N linearly independent unit

ve
tors e su
h that:

F

y

e

is pre-
ompa
t in L

1

(A

y

e

) for H

N�1

a.e. y 2 A

e

. (6:8)

Then F is pre-
ompa
t in L

1

(A).

Unfortunately this statement does not �t our purposes. A suÆ
iently general result is obtained

by allowing the possibility of repla
ing F in (6:8) with a perturbation of F . More pre
isely, for

every Æ > 0 we say that a family F

0

is Æ-dense in F if F lies in a Æ-neighborhoud of F

0

with respe
t

to the L

1

(A) topology, and then we have the following:

Theorem 6.6. Let F be a family of fun
tions v : A ! [�L;L℄ and assume that there exists N

linearly independent unit ve
tors e whi
h satisfy the following property:

for every Æ > 0 there exists a family F

Æ

Æ-dense in F su
h that

(F

Æ

)

y

e

is pre-
ompa
t in L

1

(A

y

e

) for H

N�1

a.e. y 2 A

e

.

(6:9)

Then F is pre-
ompa
t in L

1

(A).

Proof. With no loss in generality, we may assume that L = 1 and jA

y

e

j � 1 for all y. Every fun
tion

de�ned on A is extended to 0 on R

N

nA, and a

ordingly every fun
tion de�ned on A

y

e

is extended

to 0 on R n A

y

e

. Fix for the moment a unit ve
tor e whi
h satis�es (6:9). For all y 2 A

e

and all

s > 0 we set

!

y

Æ

(s) := sup

n

Z

R

�

�

v

y

e

(t+ h)� v

y

e

(t)

�

�

dt : v 2 F

Æ

; h 2 [�s; s℄

o

: (6:10)

Sin
e jv

y

e

j � 1 and jA

y

e

j � 1, then !

y

Æ

(s) � 2 for all s > 0, and sin
e (F

Æ

)

y

e

is pre-
ompa
t in L

1

(A

y

e

),

the Fr�e
het-Kolmogorov Theorem yields that !

y

Æ

(s) # 0 as s # 0. Take now u 2 F and Æ > 0, and


hoose v 2 F

Æ

su
h that ku� vk

1

� Æ (in L

1

(A)). By (6:10) we obtain, for every h

Z

R

N

�

�

u(x+ he)� u(x)

�

�

dx � 2Æ +

Z

R

N

�

�

v(x + he)� v(x)

�

�

dx

= 2Æ +

Z

A

e

�

Z

R

�

�

v

y

e

(t+ h)� v

y

e

(t)

�

�

dt

�

dy

� 2Æ +

Z

A

e

!

y

Æ

(jhj) dy : (6:11)
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For every Æ > 0 and s > 0 we set !

Æ

(s) :=

R

A

e

!

y

Æ

(s) dy. Then !

Æ

� 2jA

e

j be
ause !

y

Æ

� 2,

and !

Æ

(s) # 0 as s # 0 be
ause the same holds true for all !

y

Æ

(apply the dominated 
onvergen
e

theorem). Now, for all s > 0 we set !(s) := inf

Æ>0

�

2Æ + !

Æ

(s)

�

: the fun
tion ! is bounded and

!(s) # 0 as s # 0, and (6:11) yields

Z

R

h

�

�

u(x+ he)� u(x)

�

�

dx � !(jhj) 8h 2 R; v 2 F : (6:12)

Finally we take linearly independent unit ve
tors e

i

with i = 1; : : : ; N whi
h satisfy (6:9) and

we take !

i

su
h that (6:12) holds (with e and ! repla
ed by e

i

and !

i

resp.). Sin
e the ve
tors e

i

span R

N

, the Fr�e
het-Kolmogorov Theorem implies that F is pre-
ompa
t in L

1

(A).

We 
on
lude this subse
tion by re
alling some results about the sli
ing of Sobolev fun
tions

and �nite perimeter sets, whi
h are well-known to experts but not available in this form in standard

referen
e books. For simpli
ity we 
onsider only one-dimensional sli
ings, but the following results

are valid for sli
ings with arbitrary dimension.

Remark 6.7. Let A, e, A

e

and A

y

e

be given as before, and take a Borel fun
tion u on A; by Fubini's

theorem u belongs to L

p

(A) (with 1 � p <1) if and only if u

y

e

belongs to L

p

(A

y

e

) for a.e. y 2 A

e

and the fun
tion y 7! ku

y

e

k

p

belongs to L

p

(A

e

).

Similarly, given a sequen
e (u

n

) � L

p

(A) whi
h 
onverges to u in L

p

(A), possibly passing

to a subsequen
e we have that (u

n

)

y

e


onverges to u

y

e

in L

p

(A

y

e

) for a.e. y 2 A

e

. Conversely, if

(u

n

)

y

e

! u

y

e

in L

p

(A

y

e

) for a.e. y 2 A

e

and the fun
tions ju

n

j

p

are equi-integrable, then u

n

! u in

L

p

(A).

Proposition 6.8. (
f. [EG℄, se
tion 4.9)

Let be given u 2 L

p

(A). If e is an arbitrary unit ve
tor and u belongs to W

1;p

(A), then

u

y

e

2 W

1;p

(A

y

e

) for a.e. y 2 A

e

, and the derivative Du

y

e

(t) agrees with the partial derivative

D

e

u(y+ te) for a.e. y 2 A

e

and t 2 A

y

e

. Conversely u belongs to W

1;p

(A) if there exist N linearly

independent unit ve
tors e su
h that u

y

e

2W

1;p

(A

y

e

) for a.e. y 2 A

e

and the fun
tion y 7! kDu

y

e

k

p

belongs to L

p

(A

e

).

Proposition 6.9. (see [Amb1℄, 
f. also [EG℄, se
tion 5.10)

Let be given a Borel set E � A. If e is an arbitrary unit ve
tor and E has �nite perimeter in

A, then E

y

e

has �nite perimeter in A

y

e

and �(E

y

e

\ A

y

e

) = (�E \ A)

y

e

for a.e. y 2 A

e

, and

Z

A

e

#(�E

y

e

\ A

y

e

) dy =

Z

�E\A

h�

E

; ei : (6:13)

Conversely, E has �nite perimeter in A if there exist N linearly independent unit ve
tors e su
h

that the integral of #(�E

y

e

\ A

y

e

) over all y 2 A

e

is �nite.

6.4. An inequality of isoperimetri
 type

In this last subse
tion we 
onsider �nite perimeter sets A in R

3

, as usual �A denotes the

essential boundary of A. The result we are interested in reads as follows:

Proposition 6.10. Let be given an in�nite 
ylinder 
 with radius r in R

3

, and a �nite perimeter

set A � 
 with volume jAj � �

2

r

3

. Then j�A \ 
j � 2�r

2

.

Proof. Let denote points in R

3

by (x; t) 2 R

2

� R, and let P be the proje
tion on R

2

, that is,

P (x; t) := x. We assume 
 is of the form D � R where D is the disk with 
enter 0 and radius

r in R

2

, and that every point of A is a point of density one. For all t 2 R we denote by A

t

the
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set of all x su
h that (x; t) 2 A, and by Æ the measure of D n P (A). We apply to ea
h set A

t

the

isoperimetri
 inequality on the disk D:

min

�

jA

t

j; � r

2

� jA

t

j

	

� C j�A

t

\Dj

2

; (6:14)

where C := �=8.

By the de�nition of Æ we obtain �r

2

�jA

t

j � Æ, and if we apply the inequality minfa; bg � a

2

b

(valid for 0 � a; b � 1) with a := jA

t

j

Æ

�r

2

and b := Æ

Æ

�r

2

, we get min

�

jA

t

j; �r

2

� jA

t

j

	

�

Æ

�

jA

t

j=�r

2

�

2

. Then (6:14) yields j�A

t

\ Dj �

p

Æ=C

�

jA

t

j=�r

2

�

, and integrating this inequality

over all t leads to

Z

R

j�A

t

\Dj dt �

p

Æ=C

�r

2

jAj : (6:15)

We re
all now that for every two-dimensional re
ti�able set S � R

3

there holds

�

H

2

(S)

�

2

�

h

Z

D

#

�

S \ fxg � R

�

dx

i

2

+

h

Z

R

H

1

(S

t

) dt

i

2

(this inequality 
an be easily derived for surfa
es of 
lass C

1

, and therefore immediately extended

to any re
ti�able set). Now we apply this inequality to S = �A\
, and sin
e (�A\
)

t

= �A

t

\D

for a.e. t 2 R and #

�

�A \ fxg � R

�

� 2 for a.e. x in P (A) (
f. Proposition 6.9), by (6:15) we get

j�A \ 
j

2

� 4(�r

2

� Æ)

2

+

ÆjAj

2

C�

2

r

4

� (2�r

2

)

2

+

�

jAj

2

C�

2

r

4

� 8�r

2

�

Æ + 4Æ

2

:

Finally, inequality j�A \ 
j � 2�r

2

follows when jAj �

p

8C�

3

r

6

= �

2

r

3

.
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