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Abstract. Adding simply, in the classical capillary model, a constant line density of
energy along the contact line leads to ill-posed equilibrium problems. Then, when line
tension is present, the equilibrium configuration minimizes a different energy : the
“relaxed ” energy, which explicitly depends on the presence of surface phases (i.e.
infinitesimal films) on the boundary of the container. This formulation enable us to
describe the modifications of the Young’s law and then of equilibrium configurations
which are due to line tension.
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Introduction.

In the simplest model for capillarity, one consider two phases A and B lying in a
rigid container €. One, at least, of the phases is incompressible and a constant surface
energy Yas 1s concentrated on the interface S,z which divides the two phases. The
wetting properties of the wall dQ of the container are taken into account by considering
constant surface energies Yao and Yso concentrated on the contact surfaces Saq, Spq of
the phases A and B on the wall. The contact line L, defined as the intersection of the
interface and the wall of the container , plays an important role for describing
equilibrium conditions. The associated contact angle 0 is defined as the angle made by
the interface and the wall, more precisely made by normal vector of the interface Sap
external with respect to A and the normal vector of the wall dQ external with respect to
Q (cf. figure 1).

Figure 1. Notations.



The equilibrium state is determined by the position of one of the phases, say A, and is
given by the minimization of the capillary energy :

E(A):: 'YAB| SAB|+ 'Y AQ | SAQ|+ Y BQ | SBQ'

where | Sash | Saal| Seal denote the areas of the different interfaces. The total volume
| Al of the phase A is fixed in this minimization procedure.

An interesting extension of this model is obtained by considering the possibility
of a concentration of energy along the contact line [1], [2], [3], [4]. Denoting c the
(constant) line tension, the equilibrium state is given by the minimization of the energy:

F(A):= 'YAB| SAB|+ Y ac | SAQ|+’Y BQ | SBQ|+ c | Lc|
where | LC| denotes the length of the line Lc.

What are the equilibrium conditions in that case? And before all, is this
minimization problem a well-posed problem? These are the questions we will discuss in
the sequel. We will show that the problem is, in general, ill-posed. The associated well-
posed problem (the minimization of the “ relaxed” energy) cannot be formulated
without considering surface phases on the wall. This notion of surface phases is
connected with the notion of wetting (or dewetting) films. Rigorous proofs will not be
given here : interested readers can refer to [5].

1 Back to the no line-tension case.

Let us first consider the classical case when no line tension is present. The
equilibrium conditions are well known [6] : (i) the interface has a constant mean
curvature, (i1) the contact angle © is constant along the contact line and is given by the
Young’s law :

cos(f) = Ye— e
YAB

Clearly, when |Y AQ — YBo b Y as > the Young’s law cannot be satisfied. Different
attitudes are possible in this situation :

i) one can first consider that the wetting inequality Yap = |Y AQ — YBo | holds in every
physical case;

i1) or one can assume that there is no contact between the phase A and the wall if this
inequality is not satisfied.

Both attitudes cannot be entirely correct : many cases have been described in which the
wetting inequality is not satisfied and, when the volume of the phase A is sufficiently
large, the contact between A and the wall cannot be avoided.



Assume, for instance, that Yao = Yas + Yso. In that case the minimization of the
energy E is a ill-posed problem. Indeed, let us consider a minimizing sequence (one can
imagine either a slow motion of the phases toward the equilibrium state or a numerical
descent method for searching the minimum of the functional). In some geometric case
as the one represented in figure 2, the limit of the minimizing sequence may not be a
minimizer.
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Figure 2: a minimizing sequence.

From a microscopic (infinitesimal) point of view Saqis empty and attitude (ii) is
correct.

From a macroscopic point of view, the equilibrium configuration is the limit of
the minimizing sequence and S,q is not empty : A does not minimizes the original

energy E but a “ relaxed ” energy E given by

E (A):= 'YAB| SAB|+ (Y aB +YBa )| SAQ|+ Y Ba | SBQ|

Then the energy E one has to consider from a macroscopic point of view satisfies the
wetting inequality and attitude (i) is correct.



The difference between the original energy E and the relaxed one £ takes into
account the existence of a microscopic (infinitesimal) film of phase B between phase A
and the wall. Of course, extra physical arguments may bound the thinness of this film
and modify its energy (which is simply here the sum of the energies Yap + Ysa). Such
arguments are not necessary at this point and do not change fundamentally our
conclusions.

The remarkable fact we much emphasize is that the relaxed energy E has the
same form as the original one E. Owing to this ““ miracle ” one can ignore in this model
the presence of films along the wall by considering only, from the very beginning,
energies which satisfy the wetting condition. The relaxation of the model when line
tension is present is not so simple.

2. Intuitive equilibrium conditions with line tension.

The equilibrium conditions can be written in a intuitive way by considering the
equilibrium of forces at the contact line (cf. figure 3). As previously, the mean curvature
of the interface is constant but the Young’s law is modified :
o —
cos(9) = L2V _ X g
YAB YaB

where K denotes the geodesic curvature of the contact line on the wall.

Figure 3 : intuitive equilibrium of the contact line.

The existence of a contact angle 0 satisfying the Young’s law needs the inequality Yag =
|y A0 — YBa - C K| This condition cannot replace the classical wetting condition as it
depends now on the solution (through the curvature K of the contact line). Is there a
condition which assures that the equilibrium problem is well-posed?



3. Relaxed formulation.

Let us compute the relaxed energy by considering again a minimizing sequence (figure
4).
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Figure 4 : minimization with line tension



The point is that the limits (denoted A’, B’ and Lag: ) of Saq, Spe and of the
contact line Lc do not coincide with the apparent contact surfaces Saq, Spe and contact
line L. The surfaces A’ and B’ can be considered as surface phases on the wall, the line
Lsp dividing these phases. The energy of the limit configuration depends on the
position of the volume phase A and of the surface phase A’ (indeed every quantity can
be expressed in term of A and A’) : it reads

o (AA):= 'YAB| SAB|+ Y aa | SAA’I'" Y BB’ | SBB‘|+ Y ap’ | Sap: |+ Y Ba | Sea |+ C | LA’B’l
where Saa (respectively Sgp', Sap', Spa’) denotes the contact surface between the volume
phase A (resp. B,A,B) and the surface phase A’(resp. B’,B’,A’). Here the energies are
simply given by :

Yan= Yaa, Y83'= YBa, YaB'= YaBtYBa » YBA= YaBtYAQ,
but, as previously, extra physical arguments can modify the value of these energies.
Theoretically, the relaxed energy F should be expressed in term of A only :
F(A)=infx @ (AA)
but this formulation is useless : F is non local and non explicit. On the other hand,
privileging the volume phase in the formulation of the energy is now somehow arbitrary.
The surface phase plays a symmetric role and even, from an experimental point of view,

may be the most accessible quantity.

Thus the only way to study capillary equilibrium with line tension is to consider

the energy ® : surface phases (wetting films) cannot be ignored.

4. Associated equilibrium conditions.



Figure 5 : a possible equilibrium state with line tension.

Let us write the equilibrium conditions for the energy ¥ in the general case.
Note that the contact line and the dividing lines can partially coincide (see figure 5
where a drop of phase A is lying on a non-flat surface and submitted to some extra
external force like gravity). The equilibrium conditions depend on the different possible
situations (corresponding to the points M, N, P, O, R in figure 5).

Let us defined the dimensionless parameters 0,, 0,, T and the characteristic
length A as follows

cos(61) = i cos(6r) = i
YAB YAB
r= VBB +YAB' —YAA —VBA 1= c
VAB VAB

and assume that 0, > 0,, the other case being similar.
- Where the two line coincide (at point M) we have
0 <[01,02] 4nd —2AK =1 —cos(@1)—cos(62) +2cos@)
- Otherwise,
- on the dividing line LA'B’,

~in A (at point N) : —2AK =t —cos(f1)+ cos(02)
- in B (at point P) : -2/ K =7t +cos(01)—cos(02)

- on the contact line L,



-in A’ (at point Q) : 6=0,
-in B’ (at point R) : 6=0,

5. Consequences upon equilibrium.

Consequences of these conditions upon equilibrium are straightforward but the
possibility for the dividing line and the contact line to separate may lead to hysteresis
and instability [7].

For sake of simplicity, assume that yaa= Ysp= 0 and Yap-= Ysa= Yas and consider a
small drop of phase A growing in a capillary tube of radius r (cf. figure 6). There are
two critical volumes for the drop, V1 =4 1 r*/3 and V2= m 1> (r /3+2)) : when | A| < V1,
A is a sphere and A’ is empty; when Vi<l A| < V2, A is the union of two half-spheres
and a cylinder, A’ is still empty; when | A|> V2, A is a cylinder and A’ coincides with
the interface Saq;

.
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Figure 6 : A drop growing in a capillary tube

Notice the sudden change of the contact angle (from O to ©/2) when the volume
reach the critical volume V2. This result can be extended to a drop growing on a plane
surface with Yaa= Yss:= 0 and 0< Yap-= Ysa< Yas . The computation of the critical volume
is less simple [7]: figure 7 shows the contact angle versus the volume of the drop.
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Figure 7: contact angle of a drop lying on a plane substrate

Conclusion.

The notion of surface phases (films) is crucial when taking into account line

tension. The macroscopic energy P must be written in terms of both volume and
surface phases which play a symmetrical role. Searching equilibrium configurations
with this formulation is straightforward : an instability can occur which is due to the
possibility for the dividing line (the line where energy is concentrated) to coincide for a
moment with the contact line and then to jump to a lower-energy position.

The capillary equilibrium with line tension appears to be a coupled problem of
volume and surface phase transition. This makes clear the impossibility to deal with
negative line tension (in the same way as for negative surface tension in the classical
model of capillarity) : with negative line tension, the minimization problem would be
again ill-posed and any configuration would be fundamentally unstable. Negative line
tension, invoked for instance in [1], [3], [4], needs a more sophisticated model: it cannot
be taken into account without adding some extra stabilizing energy.
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