
Eur. J. Mech., B/Fluids, 12, n" 1,69-84, 1993 

Equilibrium of a Cahn-HiIliard fluid on a wall: influence 
of the wetting properties of the fluid upon the stability 

of a thin liquid film 

P. SEPPECHER * 

ABSTRACT. - A thin liquid film rests on a plane substratum. We study the linear stability of this equilibrium. 
Usually the stability properties depend upon gravity (as in the Rayleigh-Taylor instability) and not upon the 
thickness of the film or upon the wetting properties of the fluid. Using the Cahn-Hilliard model for multiphase 
fluid we show that such influences can be important. These influences decrease exponentially as the film 
thickness increases and become more important if the gravity is weak and the fluid is close to its critical point. 

1. Introduction 

We analyze the equilibrium of a thin film of liquid surrounded by its vapor and resting 
on an infinite plane (cf. Fig. I). If the film of liquid is very thin the interactions between 
the wall and the liquid-vapor interface may influence the stability of the equilibrium. 
The description of such interactions depends upon the model used to describe the fluid. 
There are no such interactions in the classical theory of capillarity (unless the notion 

of disjointing pressure is introduced, i. e., long-range forces between the wall and the 
liquid-vapor interface). Then gravity is then the only parameter which influences the 
equilibrium governed by the Rayleigh-Taylor instability [Taylor, 1950]. 
Here, our goal is to study these interactions within the framework of Cahn-Hilliard 

theory [Cahn-Hilliard, 1959], [Casal, 1972], [Gatignol & Seppecher, 1986]. The Cahn 
Hilliard model treats both phases (vapor and liquid) as a single fluid. Its free energy 
density depends not only on the mass density and the temperature but also on the 
gradient of the mass density. We will not introduce any long range force. 
This model is of mathematical interest (problem of minimizing a surface considered as 

a limit of a more regular problem [Evans et al., 1992], [Modica, 1987 b], study of non 
convex functional, application of Tvconvergence [Bouchitte, 1990]). It is also of mechani 
cal importance. As the consistency of this model with the second law of thermodynamics 
is not obvious, it has been shown that we should add an unusual energy flux into the 
energy balance equation [Dunn & Serrin, 1985] and that a suitable description of the 
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forces in such a fluid is obtainable by using the virtual power principle in the case of the 
second gradient theory [G & S, 1986], [Germain, 1973]. In this theory the usual stress 
tensor is no longer sufficient to describe the forces, an additional stress tensor (of order 
three) is needed. This extra stress tensor is not intuitive in origin. The boundary conditions 
in second gradient theory are very complex in the general case [G, 1973]. They can be 
summarized in case of a Cahn-Hilliard fluid on a rigid wall, by the classical stick 
condition and a second, unusual, condition: the normal derivative of the mass density is 
to be given on the boundaries [Seppecher, 1989]. The last condition may be viewed as 
giving information about the interactions between the fluid and the wall. It is connected 
with the wetting properties of the fluid on the wall: when a liquid-vapor interface is in 
contact with the wall the contact angle 8 formed at the common line is associated with 
this data [Cahn, 1977], [Modica, 1987 a], [S, 1989]. 

The praticai value of the model is not clear. The exponential convergence of the mass 
density to its values in the two phases has been criticized [De Gennes, 1985]. The accuracy 
of the continuum mechanics approximation in thin layers such as interfaces is not clear. 
This objection is irrelevant when the fluid is close to its critical point [Rowlinson & 
Widom, 1984]. On the other hand, the coefficients used in the model are not known. 
For example, the capillarity coefficient À [cf Eq. (1)] is assumed to be constant since it 
gives the model mathematical simplicity. Nevertheless this model is the simplest one 
which describes interfaces. 

The dependence of the free energy density upon the gradient of mass density introduces 
a small characteristic length L (the characteristic thickness of the liquid-vapor interface). 
It has been shown that, for a fixed domain, the problem of the equilibrium of a Cahn 
Hilliard fluid converges, as L tends to zero, to the classical problem of equilibrium with 
interfaces (The Plateau problem) [M, 1987 al So, we can expect different phenomena 
only when this limiting procedure cannot be performed, i. e., if another characteristic 
length is very small. For example, if the wall is not plane but oscillates with a small 
wavelength we may expect a hysteresis phenomenon [Bouchitte & Seppecher, 1992], when 
studying the vicinity of a moving contact line we may expect the removal of the 
dissipation singularity [Seppecher, 1991]. In the problem we deal with here, we expect 
some new phenomena when the film is very thin. We emphasize that the study of 
problems which may predict different results to the classical model of capillarity is the 
only way to investigate the usefulness of the Cahn-Hilliard model. 

In the first section we recall the one-dimensional solution for the equilibrium of a 
Cahn-Hilliard fluid [e, 1977]. Of the dimensionless variables of this equilibrium, three 
are especially significant: the first denoted by E, is the ratio of gravity forces to capillarity 
strengths inside the interface, the second, denoted by a, is the ratio of the thickness of 
the liquid film to the thickness of the interface, the last, denoted by f.l characterizes the 
wetting properties of the fluid at the wall. The sign of f.l is particularly significant. If f.l is 
positive we will call the fluid a wetting fluid, if f.l is negative we will call it a slightly 
wetting fluid. These two cases correspond to a contact angle smaller or larger than n/2. 
The case where f.l is close to zero, i. e. if the contact angle is close to n/2, is called the 
neutral case. 
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In the second section we study the linear stability of this equilibrium in three cases. In 
the first case the liquid film is much thicker than the interface (a= 00). We show then 
that the first approximation for the critical wavenumber is the classical value given by 
the Rayleigh-Taylor theory. In the two other cases the thickness of the liquid film is 
finite and there is no gravity. We show that the equilibrium is unstable if 11<0, i. e., if 
the fluid is slightly wetting. The equilibrium is stable if Il> O. The influence of the wall 
decreases exponentially as the thickness of the liquid film increases. 

In the last part we compare the effects of gravity relative to the effects of the wall. 
We show that, in usual conditions, and even in micro-gravity conditions, the effects of 
the wall are insignificant. These effects may only become important for extremely thin 
(some hundred Angstroms). However, when the temperature is close to the critical 
temperature of the fluid, these effects may become important even for thick films. 

2. The one-dimensional equilibrium 

We consider a fluid resting between two infinite plane walls {z= - A} and {z= B} 
(Fig. 1). At a given temperature the free energy per unit volume of the fluid is: 

(1) À E=W(p)+-(V p)2 
2 

B 

~g 
vapor 

O 

-A liquid film 

Fig. 

w 

mass density 

Fig.2 

where p is the density of the fluid, W (p) is a non convex function (Fig. 2) and À is a 
coefficient assumed to be a constant (the capillarity coefficient). 
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The surface energy of the layer is 

(2) 

where g is the acceleration due to gravity, and m-A et mB are coefficients related to the 
wetting properties of the walls. 

A one-dimensional equilibrium solution is the function Pe (z) which minimizes F, 

subject to the constraint fB P dz = M. 
-A 

As we intend only to study the influence of the wall {z = - A} upon the equilibrium 
we assume that mB = O. M is the mass per unit area in the whole layer { - A < z < B }. 
This data fixes the thickness of the liquid layer. This mass constraint is needed to obtain 
the Euler equation associated with the minimization problem (2). Afterwards we will 
replace it with a given liquid film thickness. 

The function P minimizing F is a solution of the differential equation 

(3) òW/òp- Àò2 p/òz2 + gz= Const. 

where fB p=M, òp/òz= -rn_A/À at z= -A and òp/òz=O at z=B. 
-A 

2. l. THE DIMENSIONLESS QUANTITIES AND ASSUMPTIONS 

Let P ---> P P + q be the equation of the bitangent to the graph of the function W (Fig. 2) 
and p, and PL be the values of the mass density at the contact points. We denote by a 
the quantity (which is a surface energy): 

(4) a= fofPL (W (p)- p P- q)1/2 dp 
PV 

Further, we set Pd=((PL -Pv)/2) and Pm=((PL +Pv)/2). 
We choose as our characteristic length L = (Pd)2 À/a and define the dimensionless 

quantities 

(5) 
z 

x= 
L' 

A a= 
L' 

P-P u= __ m , 
Pd 

W= (W (p)- p P- q)(Pd)2 À 
2 ' a 

M =2M 
o L ' Pd 
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The problem is then to minimize the functional 

(6) 

such that f:a udx=Mo, 

or to solve the differential equation 

(7) òw 
_- u" + EX= Const. 
ÒU 

with fa udx=Mo, u'(b)=O and u'(-a)= -Il, 

where u' and u" denote duldx and d2 ujdx", respectively. 

Let u, be the solution of (7). The intervals where Ue are close to + I or - I coincide 
with the liquid and vapor phases, the zone where Ue varies from - 1 to + 1 coincides 
with the interfacial zone. We study the solutions which correspond to an equilibrium of 
a liquid film on the wall {x= - a}. We assume therefore that Mo is such that the 
solution Ue is close to + l near the wall x = - a and close to - 1 elsewhere (cf. Fig. 3 
or 4 depending on the sign of Il). We assume that u (O) = O (this is not a restriction since 
the origin x=O may be chosen to be in the interfacial zone). With this choice for the 
origin, a and b are no longer free parameters for the problem but unknown quantities. 
The width a + b of the layer is given but the ratio a/Ca + b) is related to the parameter 
Mo· For large values of a and b we have approximately: Mo = a PL + b Pv. From now on 
we will choose a to be a parameter of our problem instead of Mo. 

The transition from the value + l to the value - I occurs in an interval of length of 
order one. The characteristic length L which we have chosen is the characteristic thickness 
of the interface. 

We shall investigate the influence of the parameters a, Il, E upon the equilibrium. Here 
a is the ratio of the liquid film thickness to the interface thickness; generally it is a large 
quantity; b is the ratio of the vapor phase thickness to the interface thickness. We assume 
that b is large enough for its influence to be negligible: b = 00 (A finite value for b was 
necessary only to write the problem in the form (2)). E is the ratio of the gravitational 
energy of the interfacial zone to the surface tension: it is a small quantity even in the 
case of large gravity. Finally Il is the ratio of the surface energy of the wall-liquid 
interface to the surface tension: this parameter is of order of one. Thus we have 

b=oo, a e- l, E~ l, 

2.2. BASIC EQUILIBRIUM SOLUTION 

Under the conditions of no-gravity and with infinite boundaries (E = O, a = b = 00, Il = O) 
it is easy to integrate the Eq. (7) to give 

(8) 
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where h is the primitive: h (u) = J: (2 w (t)) -1/2 dt. 

This basic solution Uo satisfies 

(9) [by differentiation of (7)] 

and at the boundaries 

(lO) Uo ( ± 00 ) = ::¡:: l, u~(± 00)=0, u~ (± 00)=0. 

The surface energy of the fluid under these conditions is called the (dimensionless) 
surface tension, denoted bye'. Its value is l. This is due to our choice of (J as the 
characteristic quantity for the energy, (J is actually the surface tension: 

(11) f
+1 

e"= (2w(u))1/2du=1. 
-1 

2.3. THE EQUILIBRIUM WITH FINITE BOUNDARIES AND NO GRAVITY 

If J..l < O the equilibrium solution Ue (x) looks like that in Figure 3. There is a maximum 
in Ue at x=c(u:(c)=O) (c-c O). As the value of a is large but still finite, u:'(c) is a small, 

U 

liquid film 

r-< 
r-< H ro 

" a c b 

-1 vapor 

inter:Eace 

Fig. 3. - The density profile for a slightly wetting fluid. 

non zero, negative quantity denoted by v. As b is equal to infinity, we have u¿ (b) = -l, 
u: (b) = O, u" (b) = O. 
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interface 

Fig. 4. - The density for a wetting fluid. 

If ¡.t>0 the equilibrium solution ue(x) is of the type presented in Figure 4. It is a 
decreasing function with a point of inflexion at x = c : u:' ( c) = O (c < O). As the value of a 
is large but finite, u: (c) is a small, non zero, negative quantity denoted k. As b is equal 
to infinity, we have Ue (b) = -l, u: (b) = O, u:' (b) = O. 
We remark that these descriptions are valid only if ¡.t is not close to zero. If O < ¡.t «; l 

the function Ue may have neither a maximum or a point of inflection. Also if I ¡.t I = O (l) 
then c is approximately aj2 so we have l «; I c I, l «; a -I c I. 

3. Stability 

We study the linear stability of the equilibrium to two-dimensional perturbations. The 
equilibrium is stable if the variation of the surface energy due to a perturbation which is 
periodic in the horizontal coordinate is positive for every wavelength. Computing this 
variation and denoting by <D (x) the amplitude of the perturbation, we look for the 
solutions (Ci, <D) of the eigenvalue problem: 

(12) <D' (- a) = <D' (b) = O, 

or, for the value Ci, for the minimum of the functional: 

(13) Ci= min r (<D), 
cI> 

r _ fa ((a2 wjau2) (ue) <D2 + <D'2) dx 

fa <D2 dx 
where Ci>O(Ci<O) means that the equilibrium is stable (unstable). 

3.1. THE CASE OF INFINITE BOUNDARIES: THE RAYLEIGH-TAYLOR INSTABILITY 

When the liquid-vapor interface is sufficiently distant from the wall then gravity is the 
only parameter which influences the stability. 
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Under conditions of no gravity (E = O) the equilibrium density Uo (x) is given by the 
equation (8) and u~ is equal to zero at the boundaries. Then the problem (12) has the 
following simple solution: 

(Xo = O, cl>o (x) = u~ (x). 

With gravity small (O < E ~ l) we can compute the equilibrium solution as an asymptotic 
expansion in E : u, = Uo + E U1 + ... , U1 is given by 

(14) a2 w (uo (x)) U1 - u~' + x= O. 
au2 

In the same way we look for the solution of the problem (12) as an asymptotic expansion 
in E 

(X = (Xo + E (Xl + ... 

(Xl and cl>1 are solutions of 

(15) 

By differentiation of (14) we get 

a3 w ( )' a2 w ( ())' r t r l O -- Uo Uo U1 + - -- Uo X U1 - U1 + = , 
au3 au2 

So that (15) becomes 

and using (9) 

(16) 

Integrating this equation from - 00 to + 00 we get 

Finally, using (10) and (11), we have 

(X1=+2. 

The first approximation for (X is then (X = 2 E. This is the classical result for Rayleigh 
Taylor instability: if E is positive, i. e. if g is positive, the equilibrium of the interface is 
stable. If E is negative this equilibrium is unstable and the critical wave number n; is 
given by: ne = (- (X)1/2 = (- 2 E)1/2 i. e. in dimensional the critical wave number is ne = ncfL 
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or 

(17) 

3.2. THE CASE OF A FINITE BOUNDARY AND NO GRAVITY FOR A SLIGHTLY WETTING FLUID: m < O. 

Now we study the case Il < O. The equilibrium solution u, (x) is described in 2.3 where 
the parameters c and vare also defined. 

We denote by <l>oEHl ([ -a, bD the function defined by 

<l>o(x)=O, 'if XE[ -a, eJ, 
<l>o(X)=u:(x), 'ifxE[e, bJ. 

We have r ((ò2 w/òu2) <I>~ + <I>~2) dx 
r(<I>o)=-c---- __ r <I>~ dx 

Since 

then I" (<1>0) = O and cr;;;; O i. e. the equilibrium is unstable. 
Let us now search for an approximation to cr. Defining 'I' = <I> - <1>0' we have r (ò2 w/òu2) u:2 + U:'2) dx 

+ 2 r (ò2 w/òu2) u: 'I' + u:' 'I") dx + fa (ò2 w/òu2) 'I'2 + 'I"2) dx 
cr=mln-------------- ___ 

'I' fa (<I>o+'I')2dx 
i. e. 

2 r (ò2 wlôu? u: 'I' + u:' 'I") dx + f (ò2 w/òu2) 'I'2 + 'I"2) dx 
cr= min c -a 

'I' fa (<1>0 + 'I')2 dx 
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or 

(18) 
o.=imin 2[u:'\}1]~= fa ((02W/OU2)\}I2+\}I'2)dx 

'P r u:2dx+ r (2u:\}I)dx+ r \}I2dx 
As a ~ 1 we have v <:g 1 and the function \}I minimizing the functional (18) is such that 
\}I <:g 1 [Eq. (22) is an a posteriori justification of this assumption]. The first approximation 
for IX is then given by 

(19) 

- 2 v \}I (c) + f ((02 W/Ou2) \}I2 + \}I'2) dx 
lX~min -a 

'P lb U'2 dx 
Defining S2 = 02 W/Ou2 (u, (c)) and taking a number d such that 

(20) I c+al, 

Then u¿ is almost constant in ]c- d, c+ dl. Therefore 02 W/Ou2 (ue) is almost constant: 
02 W/OU2 (Ue) ~S2 = O (1). The function \}I minimizing the functional decreases exponen 
tially with the distance from c. The distance characterizing this decrease is of order one. 
We have the successive approximations 

-2v\}l(c)+ f+d (S2\}12+\}I'2)dx 
lX~min c-d 

- 'P lb u:2 dx 
and 

(21) 

-2v\}l(c)+ f+oo (S2\}12+\}I'2)dx 
lX~min -00 

- 'P lb u:2 dx 
The function minimizing (21) is then given by: 

(22) { 
\}I (x)=v/2s exp (+s(x-c)), on [-00, c], 
\}I(x)=v/2sexp(-s(x-c)), on [c, +00], 
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l b .. moreover u:2 dx ~ U~2 dx ~ e' = I so that 
c -00 

(23) v2 a~- 
- 2s' 

We now estimate the value ofv. When u~l we have W(U)~s2(1-U)2. Let us denote 
ue(c)-u by 8. When 8~O, 8 is given by the differential equation 

(24) 

Its solution has the following form: 

(25) v 
8(x)=-(ch(s(x-c))-I). 

S2 

When I Il I is of order one we have - c ~ a + c ~ a/2, so 8 is of order one at the wal! and 
in the liquid-vapor interface. Thus we have 

with v~l, a~l, s=O(1). Also 

(26) 

(27) (X=O(-2s3 exp (-sa)). 

In order to write (27) interms of dimensional quantities, let us introduce Œ= (X/U and S 
the speed of sound in the liquid phase: S2=pdò2W/òp2)(PL)=s2(PLa2/pdÀ}We have 

(28) Œ= -o( 2p;S3 ex (_ S A)) 
aÀ 1/2 pl/2 p À 1/2 p¿/2 . 

3.3. THE CASE OF A FINITE BOUNDARY AND NO GRAVITY FOR A WETTING FLUID: m>O. 

Now we study the case Il> O. The equilibrium solution Ue (x) is described in 2.3 where 
the parameters c and k are also defined. We denote by <1>0 E Hl ([ - a, b]) the function 
defined by 

<1>0 (x)=k, Ii XE [-a, c], 

<l>o(x)=u:(x), liXE[C, b]. 
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As in the previous case let us take <D = <Do + \{I: 

(29) a = min {[fe (a2 ~ k2) dx + 2 fe (a2 ~ k \{I) dx 
'¥ -r a au -a au 

however 

and 

and 

so 

(30) a = min {(fe (a2 ~ k2) dx + 2 fe (a2 ~ k \{I) dx + fb (a2 ~ \{I2 + \{I'2) dX} 
'¥ _ a au - a au - a au 

The function \{I minimizing this functional decreases exponentially with distance c III 
[c, h] and \{I + k decreases exponentially with distance from c in [ - a, c]. The characteristic 
distances for the decrease is of order one [cf Eq. (32)]. 

With the same notation as in (20), (21) we have 

i. e. 

(31) 

The function minimizing (31) is then given by 

(32) { 
\{I (x)= -k/2(2-exp(+s(x-c))) III [-00, c] 
\j1(x)=-k/2 exp (-s(x-c)) in [c, +00] 
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(33) 

We now estimate k. With the same notation as in (24), when o~O, o is given by the 
differential equation 

(34) 

The solution has the following form: 

(35) k o (x- e) =-sh (s (x- e)). 
s 

When Il is of order one we have - c ~ a + c ~ a/2, so that o is of order one at the wall 
and in the liquid-vapor interface. Thus 

~ShC;)=O(I) with k~l, a~l, s= O (l). 

Also 

(36) 

and 

(37) cr = O (2 S3 exp ( - sa)) 

i. e. in dimensional terms 

or 

(38) - o( 2p;S3 ( S A)) cr= exp ---- 
cs): 1/2 pI12 À- 112 pt/2 . 

3.4. THE CASE OF A FINITE BOUNDARY AND NO GRAVITY FOR THE NEUTRAL CASE m ~ ° 
If I III ~ I the approximations (26) and (36) are no longer appropriate. 

When Il = 0, the density profile u, has a maximum when x = - a. The computations 
are similar to those in 3.2. The approximations (21) and (26) are suitably modified and 
we get the approximation: 

(39) cr~ -O(4s3 exp (-2sa)) 
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We now calculate the value of f.l for which œ=i O. If œ=O the solution of (12) is <l>=u~. 
Then u~' ( - a) = O and the density profile has a point of inflexion at x = - a. 
u~ ( - a) = k = - u, where k may be estimated in the same way as led to (34), (35), (36). 
We get the approximation 

(40) 

.r<1 
"' H ;::12 

I 
I 

_~~~..,¡,.L~=-"",=- _ _ 

f.l'~O(2s exp (-sa)). 

a 
- - -- 

Il 

no wetting I slightly wetting wetting 

Fig. 5. - The influence of the wetting properties 
of the fluid upon its stability. 

These results are recorded in Figure 5. We notice that outside of the vicinity of the zero, 
the actual value of f.l is unimportant, the important parameter is the sign of u. 

4. A comparison of gravitational effects with wall proximity effects 

4. l. THE CASE OF PURE WATER IN ORDINAR y CONDITIONS OR IN MICRO-GRAVITY CONDITIONS 

We use the units of internal capillarity (U.c.I.) defined in [Casal & Gouin, 1988]: the 
length unit is 5 x 10-10 m, the mass unit is 1,5 x 10- 25 kg, and the time unit is 7 x 10-13 s. 

Following the computation by [C & G, 1988], using a van der Waals function for W, 
we get: 

(41) l À=lU.C.I.; 
L= 1 U.C.I.; 

0-=0.22 U.CJ.; 
g= 10-14 u.c.r., 

E=2xlO-14. 

Pd = 0.5 u.c.r., 
S= 1.4 u.c.I.; 

The wall proxnmty effects are comparable with the gravitational effects when the 
liquid film thickness is of order of L/S I Ln (E) I i. e. when 

A = O (22 U.CJ.) = O (110 Á). 

We emphasize that the effects of the proximity of the wall are weak in the case of 
liquid films of ordinary thickness. This result is true even in micro gravity conditions: 
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For example, if the gravity is 10-6 g we have 

A = 0(31 U.C.I.)= O (160 Á) 

We remark that the use of continuum mechanics in such thin films is typical for the 
Cahn-Hilliard model and has already been discussed in the introduction. 

4.2. THE VICINITY OF THE CRITICAL POINT 

We follow here [Rowlinson & Widom, 1984]. These authors studied interfaces in the 
vicinity of the critical point. Every parameter of the fluid depends upon the "distance 
from the critical point": T-Te. (Where Tc denotes the critical temperature of the fluid). 
The results of [R& W, 1984J are 

(42) 

Thus, for the quantities we have defined, 

The maximum film thickness for which the wall effects are substantial is 

The exponents are, according to mean field theory, ß = 1/2, y = 1, v = 1/2, but are 
actually [R & W, 1984J closer to 

ß=0.32; y= 1.24; v=0.63. 

The thickness A therefore diverges at the critical temperature. Moreover it diverges 
faster than does the characteristic thickness of the interface. 

The wall effects which are negligible in usual conditions, may become very important 
when gravity is weak and when the temperature is close to the critical temperature. 
There is some uncertainty about these results. The approximations (12)-(17) we used 

are accurate if £~ l. But E diverges at the critical temperature [see (43)J. We must 
therefore assume that some value of the temperature exists such that both approximations 
£ ~ 1 and (43) are valid. 

On the other hand the model we use to describe the fluid is a very simple one which 
does not take into account long-range interactions. The exponential decrease of the wall's 
influence is a characteristic phenomenon for this model. It is associated with the exponen 
tial convergence of the density to the density in the phases, and this exponential 
convergence has been criticized [De G, 1985J. 
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